精英家教网 > 高中数学 > 题目详情
6.若a,b为实数,且(5a+6)2+(b-3)2=0,求$\frac{a}{b}$的值.

分析 利用方程求出a,b,即可得到结果.

解答 解:a,b为实数,且(5a+6)2+(b-3)2=0,
可得b=3.a=$-\frac{6}{5}$,
$\frac{a}{b}$=$\frac{-\frac{6}{5}}{3}$=-$\frac{2}{5}$.

点评 本题考查函数与方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=log2(ax2+2x+1)在($\frac{1}{2}$,1)上恒有f(x)>1,则实数a的取值范围为(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{3x+2y≤15}\end{array}\right.$,则z=log2(2x+y)的最大值为log29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.m为何值时,关于x的方程x2-(m+2)x+4=0有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=3${\;}^{{x}^{2}+2x+1}$,g(x)=3${\;}^{2{x}^{2}-4x+5}$,求当f(x)<g(x)时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知指数函数y=ax(a>0,且a≠1)的图象经过点(1,3).
(1)求函数的解析式;
(2)求当x=-1,0,2时的函数值;
(3)画出函数的图象;
(4)叙述函数的性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示[2000,2500).

(1)求毕业大学生月收入在[4000,4500)的频率;
(2)根据频率分别直方图算出样本数据的中位数;
(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[3500,4000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和为3,则实数a的值为2或$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若对任意x∈R,|x-2|+|x+3|≥a2-4a恒成立,则实数a的取值范围是[-1,5].

查看答案和解析>>

同步练习册答案