精英家教网 > 高中数学 > 题目详情
11.若a${\;}^{\frac{3}{4}}$$>{a}^{\frac{5}{4}}$,则实数a的取值范围是(0,1).

分析 利用指数函数的单调性求解.

解答 解:∵a${\;}^{\frac{3}{4}}$$>{a}^{\frac{5}{4}}$,
∴由指数函数的性质得0<a<1.
∴实数a的取值范围是(0,1).
故答案为:(0,1).

点评 本题考查实数的取值范围的求法,是基础题,解题时要注意指数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知等差数列{an}的前n项和为Sn,且满足S3=6,S6=3.则S9=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平面向量$\overrightarrow{a}$=(2,-1),则|$\overrightarrow{a}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判断函数f(x)=$\frac{1}{1+{2}^{x}}$的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求使不等式 $\sqrt{(x-2)({x}^{2}一4)}$=(2一x)$\sqrt{x+2}$成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$,g(x)=x+2.
(1)若f(g(a))=g(f(-1)),求a的值;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在直角坐标系中,曲线C1:$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (其中θ为参数),直线C2:$\left\{\begin{array}{l}{x=\frac{4}{5}t-4}\\{y=\frac{3}{5}t}\end{array}\right.$(其中t为参数).点F(-4,0),曲线C1与直线C2相交于点A、B,求|FA|•|FB|的值. 
(2)在极坐标系中,直线l:ρcos(θ-$\frac{π}{3}$)=2,与以点M(4,π)为圆心,以5为半径的圆相交于P、Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.根据表格内容填空:
x-202
y0-40
(1)写出经过这些点的二次函数解析式y=x2-4;
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知loga(x-2y)=loga$\sqrt{xy}$,(x>0,y>0),求$\frac{x}{y}$的值.

查看答案和解析>>

同步练习册答案