精英家教网 > 高中数学 > 题目详情
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数.
(1)求常数k的值;
(2)若0<a<1,f(x+2)+f(3-2x)>0,求x的取值范围;
(3)若f(1)=
83
,且函数g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
分析:(1)根据函数的奇偶性的性质,建立方程即可求常数k的值;
(2)利用函数的奇偶性和单调性解不等式f(x+2)+f(3-2x)>0,即可求x的取值范围;
(3)根据f(1)=
8
3
求出a,然后利用函数的最小值建立方程求解m.
解答:解:(1)∵f(x)=kax-a-x(a>0且a≠1)是奇函数.
∴f(0)=0,即k-1=0,解得k=1.
(2)∵f(x)=ax-a-x(a>0且a≠1)是奇函数.
∴不等式f(x+2)+f(3-2x)>0等价为f(x+2)>-f(3-2x)=f(2x-3),
∵0<a<1,
∴f(x)在R上是单调减函数,
∴x+2<2x-3,
即x>5.
∴x的取值范围是(5,+∞).
(3)∵f(1)=
8
3
,∴a-
1
a
=
8
3

即3a2-8a-3=0,
解得a=3或a=-
1
3
(舍去).
∴g(x)=32x+3-2x-2m(3x-3-x)=(3x-3-x2-2m(3x-3-x),
令t=3x-3-x
∵x≥1,
∴t≥f(1)=
8
3

∴(3x-3-x2-2m(3x-3-x)+2=(t-m)2+2-m2
当m
8
3
时,2-m2=-2,解得m=2,不成立舍去.
当m
8
3
时,(
8
3
2-2m×
8
3
+2=-2

解得m=
25
12
,满足条件,
∴m=
25
12
点评:本题主要考查函数奇偶性的应用,以及指数函数的性质和运算,考查学生的运算能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)
,若存在不同时为o的实数k和x,使
m
=
a
+(x2-3)
b
n
=-k
a
+x
b
m
n

(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)设M(a,ka),N(b,-kb),(a>0,b>0),求P(x,y)(x>0,0<y<kx)分别到直线OM,ON的距离.
(2)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(3)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+ka-x(a>0,且a≠1)是定义域为R的奇函数.
(1)求实数k的值;
(2)若f(1)=
32

①用定义证明:f(x)是单调增函数;
②设g(x)=a2x+a-2x-2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)设M(a,ka),N(b,-kb),(a>0,b>0),求P(x,y)(x>0,0<y<kx)分别到直线OM,ON的距离.
(2)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(3)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源:浙江省杭州市西湖高级中学2011-2012学年高三10月月考试题数学理 题型:解答题

 设函数f(x)=ka x- a-x(a>0且a≠1)是定义域为R的奇函数.

(1)求k值;

(2)若f(1)>0,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

 

 

查看答案和解析>>

同步练习册答案