已知定点,,是圆:上任意一点,点关于点的对称点为,线段的中垂线与直线相交于点,则点的轨迹是
A.椭圆 | B.双曲线 | C.抛物线 | D.圆 |
B
解析试题分析:由N是圆O:x2+y2=1上任意一点,可得ON=1,且N为MF1的中点可求MF2,结合已知由垂直平分线的性质可得PM=PF1,从而可得|PF2-PF1|=|PF2-PM|=MF2=2为定值,由双曲线的定义可得点P得轨迹是以F1,F2为焦点的双曲线解:连接ON,由题意可得ON=1,且N为MF1的中点∴MF2=2,∵点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,由垂直平分线的性质可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由双曲线的定义可得点P得轨迹是以F1,F2为焦点的双曲线,故选:B
考点:双曲线的定义
点评:本题以圆为载体,考查了利用双曲线的定义判断圆锥曲线的类型的问题,解决本题的关键是由N为圆上一点可得ON=1,结合N为MF1的中点,由三角形中位线的性质可得MF2=2,还要灵活应用垂直平分线的性质得到解决本题的第二个关键点|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,从而根据圆锥曲线的定义可求解,体现了转化思想的应用.
科目:高中数学 来源: 题型:单选题
已知是双曲线的左焦点,是双曲线的右顶点,过点且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围为( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
(5分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com