精英家教网 > 高中数学 > 题目详情
5.已知集合M={α|k•360°<α<120°+k•360°,k∈Z},N={α|90°+k•360°<α<150°+k•360°,k∈Z},则M∩N中α角所在的象限为第二象限.

分析 根据集合的基本运算进行求解即可.

解答 解:∵M={α|k•360°<α<120°+k•360°,k∈Z},N={α|90°+k•360°<α<150°+k•360°,k∈Z},
∴M∩N={α|90°+k•360°<α<120°+k•360°,k∈Z},
则α角所在的象限为第二象限,
故答案为:第二象限.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.从数字1、2、3、4、5、6中随机取出3个不同的数字构成一个三位数,则这个三位数能被3整除的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列表示正确的是(  )
A.0∈∅B.1∈{偶数}C.0∈{x|0<x<4}D.2∈{x|x2-4=0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.长方形的长为x厘米,它的宽比长少3厘米,它的面积为y平方厘米,则面积y关于x的关系式是y=3x,定义域用区间可表示为x>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,正方体ABCD-A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N:NB=1:2,MC与BD交于P,求证:面NPC⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知经过双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点F的直线与双曲线右支交于点A(x1,y1).B(x2,y2),若x1+x2=12,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知tan($\frac{π}{3}$-α)=$\frac{1}{3}$,则tan($\frac{2π}{3}$+α)=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(-2,1),B(2,3),C(1,-1),直线l经过点C且与线段AB相交,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在区间D上,如果函数f(x)为增函数,而函数 $\frac{1}{x}$ f(x)为减函数,则称函数f(x)为“弱增函数”,已知函数f(x)=1-$\frac{1}{\sqrt{1+x}}$.
(1)判断函数f(x)在区间(0,1]上是否为“弱增函数”,若f(x)是“弱增函数”,请加以证明;若不是,请说明理由;
(2)当x∈[0,1]时,不等式1-ax≤$\frac{1}{\sqrt{1+x}}$≤1-bx恒成立,求实数a,b的取值范围.

查看答案和解析>>

同步练习册答案