精英家教网 > 高中数学 > 题目详情
17.设等比数列{an}的前n项和为Sn,若a3=4,S3=7,则S6的值为(  )
A.31B.32C.63或$\frac{133}{27}$D.64

分析 设等比数列{an}的公比为q,由a3=4,S3=7,可得${a}_{1}{q}^{2}$=4,${a}_{1}(1+q+{q}^{2})$=7,解得a1,q.再利用等比数列的求和公式即可得出.

解答 解:设等比数列{an}的公比为q,∵a3=4,S3=7,
∴${a}_{1}{q}^{2}$=4,${a}_{1}(1+q+{q}^{2})$=7,
解得a1=1,q=2,或q=$-\frac{2}{3}$,a1=9.
当a1=1,q=2时,则S6=$\frac{{2}^{6}-1}{2-1}$=63.
当q=$-\frac{2}{3}$,a1=9时,S6=$\frac{9[1-(-\frac{2}{3})^{6}]}{1-(-\frac{2}{3})}$=$\frac{133}{27}$.
∴S6=63或$\frac{133}{27}$,
故选:C.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,P为三棱柱ABC-A1B1C1的侧棱AA1上的一个动点,若四棱锥P-BCC1B1的体积为V,则三棱柱ABC-A1B1C1的体积为$\frac{3}{2}V$(用V表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=2ax2+2bx,若存在实数x0∈(0,t),使得对任意不为零的实数a,b均有f(x0)=a+b成立,则t的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:?x0∈R,x0≤2的否定是(  )
A.¬p:?x∈R,x≤2B.¬p:?x∈R,x>2C.¬p:?x∈R,x>2D.¬p:?x∈R,x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=9${\;}^{\frac{1}{3}}$,b=3${\;}^{\frac{2}{5}}$,c=4${\;}^{\frac{1}{5}}$,则(  )
A.b<a<cB.a>b>cC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义运算a⊕b=$\left\{\begin{array}{l}a\begin{array}{l}{\;},{a<b}\end{array}\\ b\begin{array}{l}{\;},{a≥b}\end{array}\end{array}$若函数f(x)=2x⊕2-x,则f(x)的值域是(  )
A.[1,+∞)B.(0,+∞)C.(0,1]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,数列{bn}中,b1=1,b2=$\frac{1}{2}$,$\frac{2}{{b}_{n+1}}$=$\frac{1}{{b}_{n}}$+$\frac{1}{{b}_{n+2}}$(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足cn=$\frac{a_n}{b_n}$,Tn=c1+c2+c3+…cn是否存在m使Tn≥$\frac{3}{4}$-m恒成立,若存在求出m的范围,若不存在说明理由.

查看答案和解析>>

同步练习册答案