【题目】甲、乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
写出甲、乙二人抽到的牌的所有情况;
甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则乙胜,你认为此约定是否公平?请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax+5.
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若a≤1,求函数y=|f(x)|在[0,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 |
每月应纳税所得额元(含税) | |||
税率 | 3 | 10 | 20 |
现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)已知直线与曲线交于两点,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,茎叶图记录了甲、乙两组各4名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(1)如果x=8,求乙组同学植树棵数的平均数和方差;
(2)如果x=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
选考方案待确定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?
(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)
(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com