精英家教网 > 高中数学 > 题目详情
11.命题“对任意的x∈R,x2-2x+1≥0”的否定是(  )
A.不存在x0∈R,${x_0}^2-2{x_0}+1≥0$B.存在x0∈R,${x_0}^2-2{x_0}+1≤0$
C.存在x0∈R,${x_0}^2-2{x_0}+1<0$D.对任意的x∈R,x2-2x+1<0

分析 特称命题的否定是全称命题,同时将命题的结论否定.

解答 解:根据全称命题的否定是特称命题可得命题“对任意的x∈R,x2-2x+1≥0”的否定是存在x0∈R,${x_0}^2-2{x_0}+1<0$,
故选:C.

点评 本题考查特称命题的否定,解题的关键是熟练掌握特称命题的否定的书写规则,依据规律得到答案,要注意理解含有量词的命题的书写规则,特称命题的否定是全称命题,全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某四棱锥的三视图如图所示,则该四棱锥的体积为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列五个结论:
①从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号是482;
②命题“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③将函数$y=\sqrt{3}cosx+sinx(x∈R)$的图象向右平移$\frac{π}{6}$后,所得到的图象关于y轴对称;
④?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是幂函数,且在(0,+∞)上递增;
⑤如果{an}为等比数列,bn=a2n-1+a2n+1,则数列{bn}也是等比数列.
其中正确的结论为(  )
A.①②④B.②③⑤C.①③④D.①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sin2α=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sinα和cosα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为$\frac{1}{2}R$,AB=AC=2,∠BAC=120°,则球O的表面积为$\frac{64}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,正方体ABCD-A′B′C′D′的棱长为1,O是平面A′B′C′D′的中心,则O到平面ABC′D′的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:[20,25],[25,30],[30,35],[35,40],[40,45].
(Ⅰ)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40]岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列5个判断:
①若f(x)=x2-2ax在[1,+∞)上增函数,则a=1;
②函数y=2x为R上的单调递增的函数;
③函数y=ln(x2+1)的值域是R;
④函数y=2|x|的最小值是1;
⑤在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.
其中正确的是②④⑤.

查看答案和解析>>

同步练习册答案