精英家教网 > 高中数学 > 题目详情
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分.
(1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF="          " .

(2)(选修4-4,坐标系与参数方程)在极坐标系(中,曲线的交点的极坐标为         .
(3)(选修4-1,不等式选讲)
已知函数.若不等式,则实数的值为        .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是底面边长为1的正四棱柱,高。求:
⑴异面直线所成的角的大小(结果用反三角函数表示);
⑵四面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求点D到平面ACE的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知四棱锥PABCD的底面是直角梯形,∠ABC=∠BCD=90oABBCPBPC=2CD=2,侧面PBC⊥底面ABCDOBC的中点,AOBDE.

(1)求证:PABD
(2)求二面角PDCB的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=

(1)求证:AO⊥平面BCD;
(2)求二面角A—BC—D的余弦值;
(3)求点O到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD—A1B1C1D1中,已知底面四边形
ABCD是边长为3的菱形,且DB=3,A1A=2,点E
在线段BC上,点F在线段D1C1上,且BE=D1F=1.
(1)求证:直线EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱锥C—ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题4小题,每小题5分,满分20分)
13.用一个平面去截正方体,其截面是一个多边形,则这个多边形的边数最多是    条 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知,求点的坐标,使四边形为直角梯形.

查看答案和解析>>

同步练习册答案