精英家教网 > 高中数学 > 题目详情
若tanα=-
1
2
,则
1+2sinαcosα
sin2α-cos2α
的值是(  )
A、
1
3
B、3
C、-
1
3
D、-3
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由二倍角公式,万能公式将原式化简,代入tanα=-
1
2
即可求值.
解答: 解:
1+2sinαcosα
sin2α-cos2α
=
1+sin2α
-cos2α
=
1+
2tanα
1+tan2α
-
1-tan2α
1+tan2α
=-
1
3

故选:C.
点评:本题主要考察了同角三角函数基本关系的运用、万能公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

α是第二象限角,P(x,
5
)为其终边上一点,cosα=
2
4
x,则sinα的值为(  )
A、
10
4
B、
6
4
C、
2
4
D、-
10
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为(  )
A、120°B、45°
C、0°D、60°

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=3cos(2x+φ)的图象关于点(
π
3
,0)
中心对称,那么ϕ的最小正值为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R,a>b,则下列不等式成立的是(  )
A、
a
c2+1
b
c2+1
B、a2>b2
C、
1
a
1
b
D、a|c|>b|c|

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
3+2sinx+cosx
的最大值是(  )
A、
3
3
-1
B、
5
3
+1
C、
3-
5
4
D、
3+
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=sin2x的图象,只需要把函数y=sin(2x+
π
6
)的图象(  )
A、向左平移
π
12
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向右平移
π
6
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人沿同一公路都由A地到达B地,甲走一半路程后跑步前进,乙走一半时间后也跑步前进,设甲、乙两人走的速度相同,跑的速度也相同,则甲、乙两人从A到B的时间t、t的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体S-ABCD中,平面ABCD⊥平面SAD,四边形ABCD为平行四边形,且AB=3,AD=2
3
,AS=2,AB⊥BD,AS⊥AD.
(1)求证:平面SBD⊥平面SAB;
(2)求平面CSB与平面DSB所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案