精英家教网 > 高中数学 > 题目详情
选做题
已知矩阵A=.在平面直角坐标系中,设直线l:2x+y﹣7=0在矩阵A对应的变换作用下得到另一直线l′:9x+y﹣91=0,求实数m、n的值.
解:在直线2x+y﹣7=0取两点M(3,1),N(0,7)
M,N在矩阵A对应的变换作业下分别对应于点M',N'
=
所以M'的坐标为(3m,﹣3+n);
=
所以N'的坐标为(0,7n);
由题意可知M',N'在直线l′:9x+y﹣91=0上,
所以
解得:m=3,n=13.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:福建省漳州一中2013届高三5月月考数学理试题 题型:044

矩阵与变换选做题

已知矩阵A有一个属于特征值1的特征向量

(Ⅰ)求矩阵A

(Ⅱ)矩阵B,点O(0,0),M(2,-1),N(0,2),求ΔOMN在矩阵AB的对应变换作用下所得到的Δ的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三5月月考理科数学试卷(解析版) 题型:解答题

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题已知矩阵A=,A的一个特征值λ=2,其对应的特征向量是α1=.

(1)求矩阵A;

(2)若向量β=,计算A5β的值.

查看答案和解析>>

同步练习册答案