精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形中,,将沿折起,使平面平面.

(1)证明:平面

(2)求三棱锥的高.

【答案】(1)见解析(2)1

【解析】分析:(1)由题意可得BDCD再利用面面垂直的性质即可证明CD⊥平面ABD;

(2)取的中点连接,利用等体积法即可求得三棱锥的高.

详解:(1)证明:∵ABADABAD,∴∠ADB=45°,

又∵ADBCDBC=45°,

又∵∠BCD=45°,BDCD

∵平面⊥平面平面平面平面

CD⊥平面ABD.

(2)方法一的中点连接.

,的中点

又∵平面⊥平面,平面平面,平面

平面

(1)

所以

设棱锥的高为

方法二:由(1)知CD⊥平面ABD,所以CDAB.

又因为ABAD

所以AB⊥平面ACD

所以棱锥的高为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若函数满足,则函数的图象关于直线对称;

②点关于直线的对称点为

③通过回归方程可以估计和观测变量的取值和变化趋势;

④正弦函数是奇函数,是正弦函数,所以是奇函数,上述推理错误的原因是大前提不正确.

其中真命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?

移动支付活跃用户

非移动支付活跃用户

总计

总计

100

(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表I中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合.

表I

温度

20

22

25

27

29

31

35

产卵数

7

11

21

24

65

114

325

(1)请借助表II中的数据,求出回归模型①的方程:

表II(注:表中

189

567

25.27

162

78106

11.06

3040

41.86

825.09

(2)类似的,可以得到回归模型②的方程为.试求两种模型下温度为时的残差;

(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合②说明哪个模型的拟合效果更好.

参考数据:

附:回归方程相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为4 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

50

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.

(1)请将上面的列联表补充完整;

(2)能否在犯错概率不超过的前提下认为喜好体育运动与性别有关?说明你的理由.

(参考公式: )

临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

同步练习册答案