精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB=PC=AC=4,AB=BC=2
2

(1)若点P在底面ABC内的射影是点O,试指出点O的位置,并说明理由;
(2)求证:平面ABC⊥平面APC;
(3)求直线PA与平面PBC所成角的正弦值.
分析:(1)先判断AB⊥BC,再根据PA=PB=PC,即可得到结论;
(2)利用线面垂直,可得面面垂直;
(3)取BC的中点为E,过A作AF⊥平面PBC交平面PAC于F,则∠APF就是PA与平面PBC所成的角,由此可得结论.
解答:(1)解:∵AC=4,AB=BC=2
2
,∴AC2=AB2+BC2,∴AB⊥BC

∵PA=PB=PC,∴点P在底面ABC内的射影O,满足OA=OB=OC
∴O是AC的中点;
(2)证明:由(1)知,PO⊥平面ABC.
∵PO?平面APC,
∴平面ABC⊥平面APC;
(3)解:取BC的中点为E,过A作AF⊥平面PBC交平面PAC于F,则∠APF就是PA与平面PBC所成的角
∵PB=PC=4,BC=2
2
,又BE=CE,∴BE⊥PE,BE=
2

∴由勾股定理,有PE=
14

∴S△PBC=
1
2
BC×PE=
1
2
×2
2
×
14
=2
7

∴VA-PBC=
1
3
S△PBC×AF=
2
7
3
AF.
∵PA=PC=AC=4,∴S△PAC=
1
2
AC×PD=4
3

∵BD⊥平面PAC,∴VB-PAC=
1
3
S△PAC×BD=
8
3
3

∵VA-PBC=VB-PAC,∴
2
7
3
AF=
8
3
3
,∴AF=
4
3
7

∴sin∠APF=
AF
PA
=
4
3
7
4
=
21
7

∴PA与平面PBC所成角的正弦值为
21
7
点评:本题考查线面垂直,考查面面垂直,考查线面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案