ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªF1£¬F2·Ö±ðÊÇÍÖÔ²G£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã£¬ÍÖÔ²GÓëÅ×ÎïÏßy2=-4xÓÐÒ»¸ö¹«¹²µÄ½¹µã£¬ÇÒ¹ýµã£¨-
6
2
£¬1
£©£®
£¨¢ñ£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÉèµãPÊÇÍÖÔ²GÔÚµÚÒ»ÏóÏÞÉϵÄÈÎÒ»µã£¬Á¬½ÓPF1£¬PF2£¬¹ýPµã×÷бÂÊΪkµÄÖ±Ïßl£¬Ê¹µÃlÓëÍÖÔ²GÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÉèÖ±ÏßPF1£¬PF2µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÊÔÖ¤Ã÷
1
kk1
+
1
kk2
Ϊ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£»
£¨¢ó£©ÔÚµÚ£¨¢ò£©ÎʵÄÌõ¼þÏ£¬×÷F2Q¡ÍF2P£¬ÉèF2Q½»lÓÚµãQ£¬Ö¤Ã÷£ºµ±µãPÔÚÍÖÔ²ÉÏÒƶ¯Ê±£¬µãQÔÚij¶¨Ö±ÏßÉÏ£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏߵĶ¨Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©Çó³öc£¬ÀûÓõãÔÚÍÖÔ²Éϵõ½·½³Ì£¬Í¨¹ýÍÖÔ²Öµa¡¢b¡¢cµÄ¹Øϵ£¬¼´¿ÉÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl·½³ÌΪy=kx+m£¬²¢ÉèµãP£¨x0£¬y0£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³ÌÀûÓÃÏàÇÐÍƳök¡¢mµÄ¹Øϵʽ£¬Çó³öµÄºá×ø±ê£¬Ö±ÏßPF1£¬PF2µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÍƳök1=
y0
x+1
£¬k2=
y0
x-1
£¬´úÈë
1
kk1
+
1
kk2
¼´¿ÉÇó³öÕâ¸ö¶¨Öµ£»
£¨¢ó£©ÔÚµÚ£¨¢ò£©ÎʵÄÌõ¼þÏ£¬×÷F2Q¡ÍF2P£¬ÉèF2Q½»lÓÚµãQ£¬Çó³öQµÄ·½³Ì£¬¼´¿ÉÅжϵãQÔÚij¶¨Ö±ÏßÉÏ£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâÒâµÃc=1£¬ÓÖ
3
2a2
+
1
b2
=1
£¬¡­£¨2·Ö£©
ÏûÈ¥b¿ÉµÃ£¬2a4-7a2+3=0£¬½âµÃa2=3»òa2=
1
2
£¨ÉáÈ¥£©£¬Ôòb2=2£¬
ÇóÍÖÔ²GµÄ·½³ÌΪC£º
x2
3
+
y2
2
=1
£®¡­£¨4·Ö£©
£¨¢ò£©ÉèÖ±Ïßl·½³ÌΪy=kx+m£¬²¢ÉèµãP£¨x0£¬y0£©£¬
ÓÉ
2x2+3y2-6=0
y=kx+m
⇒£¨3k2+2£©x2+6kmx+3m2-6=0£®
¡ß¡÷=0⇒m2=2+3k2£¬¡­£¨6·Ö£©
x0=-
3km
2+3k2
=-
3k
m
£¾0£¬
µ±k£¾0ʱ£¬m£¼0£¬Ö±ÏßÓëÍÖÔ²Ïཻ£¬
¡àk£¼0£¬m£¾0£¬m2=2+3k2⇒m=
6
3-x02
£¬
ÓÉ
x02
3
+
y02
2
=1
⇒y02=
2(3-x02)
3
µÃm=
2
y0
£¬
¡àk=-
2x0
3y0
£¬¡­£¨8·Ö£©
y=-
2x0x
3y0
+
2
y0
£¬ÕûÀíµÃ£º
xx0
3
+
yy0
2
=1
£®
¶øk1=
y0
x+1
£¬k2=
y0
x-1
£¬´úÈë
1
kk1
+
1
kk2
ÖеÃ
1
kk1
+
1
kk2
=-
3y0
2x0
(
x0+1
y0
+
x0-1
y0
)
=-3Ϊ¶¨Öµ£®¡­£¨10·Ö£©
£¨Óõ¼ÊýÇó½âÒ²¿É£¬ÈôÖ±½ÓÓÃÇÐÏß¹«Ê½¿Û£¨4·Ö£©£¬Ö»µÃ2·Ö£©
£¨ III£©PF2µÄбÂÊΪ£ºkPF2=
y0
x0-1
£¬ÓÖÓÉPF2¡ÍF2Q⇒kF2Q=-
x0-1
y0
£¬
´Ó¶øµÃÖ±ÏßF2QµÄ·½³ÌΪ£ºy=-
x0-1
y0
(x0-1)
£¬ÁªÁ¢·½³Ì
y=-
x0-1
y0
(x0-1)
xx0
3
+
yy0
2
=1
£¬
ÏûÈ¥yµÃ·½³Ì£¨x0-3£©£¨x-3£©=0£¬ÒòΪx0¡Ù3£¬¡àx=3£¬
¼´µãQÔÚÖ±Ïßx=3ÉÏ£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éѧÉú·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇóÏÂÁк¯ÊýµÄÖµÓò£º
£¨1£©f£¨x£©=2x2-3x-1£»
£¨2£©f£¨x£©=
x2+2x
x2-x
£»
£¨3£©f£¨x£©=x+
x+1
£»
£¨4£©f£¨x£©=2x-
x+2
£»
£¨5£©f£¨x£©=
x2-1
x2+1
£»
£¨6£©f£¨x£©=5-x+
3x-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑ֪бÈýÀâÖùABC-A1B1C1µÄµ×ÃæÊÇÕýÈý½ÇÐΣ¬µãM¡¢N·Ö±ðÊÇB1C1ºÍA1B1µÄÖе㣬AA1=AB=BM=2£¬¡ÏA1AB=60¡ã£®
£¨¢ñ£©ÇóÖ¤£ºBN¡ÍƽÃæA1B1C1£»
£¨¢ò£©Çó¶þÃæ½ÇA1-AB-MµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÊÂΪ
2
2
£¬¹ýÆäÓÒ½¹µãF2×÷ÓëxÖá´¹Ö±µÄÖ±ÏßlÓë¸ÃÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÓëÅ×ÎïÏßy2=4x½»ÓÚC¡¢DÁ½µã£¬ÇÒ
AB
=
2
2
CD
£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©Èô¹ýµãM£¨2£¬0£©µÄÖ±ÏßÓëÍÖÔ²EÏཻÓÚG¡¢HÁ½µã£¬ÉèPΪÍÖÔ²EÉÏÒ»µã£¬ÇÒÂú×ã
OG
+
OH
=t
OP
£¨OΪ×ø±êÔ­µã£©£¬µ±|
OG
-
OH
|£¼
8
11
3
ʱ£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏßE£º
x2
a2
-
y2
4
=1£¨a£¾0£©µÄÖÐÐÄΪԭµãO£¬×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ
3
5
5
£¬µãPÊÇÖ±Ïßx=
a2
3
ÉÏÈÎÒâÒ»µã£¬µãQÔÚË«ÇúÏßEÉÏ£¬ÇÒÂú×ã
PF2
QF2
=0£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Ö¤Ã÷£ºÖ±ÏßPQÓëÖ±ÏßOQµÄбÂÊÖ®»ýÊǶ¨Öµ£»
£¨3£©ÈôµãPµÄ×Ý×ø±êΪ1£¬¹ýµãP×÷¶¯Ö±ÏßlÓëË«ÇúÏßÓÒÖ§½»ÓÚ²»Í¬Á½µãM£¬N£¬ÔÚÏ߶ÎMNÉÏÈ¡ÒìÓÚµãM£¬NµÄµãH£¬Âú×ã
|PM|
|PN|
=
|MH|
|HN|
£¬Ö¤Ã÷µãHºãÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚѧϰÍêͳ¼Æѧ֪ʶºó£¬Á½Î»Í¬Ñ§¶ÔËùÔÚÄ꼶µÄ1200Ãûͬѧһ´ÎÊýѧ¿¼ÊԳɼ¨×÷³éÑùµ÷²é£¬Á½Î»Í¬Ñ§²ÉÓüòµ¥Ëæ»ú³éÑù·½·¨³éÈ¡100ÃûѧÉúµÄ³É¼¨£¬²¢½«ËùÑ¡µÄÊýѧ³É¼¨ÖƳÉÈçÏÂͳ¼Æ±í£¬Éè±¾´Î¿¼ÊÔµÄ×îµÍÆÚÍû·ÖÊýΪ90·Ö£¬ÓŵÈÉú×îµÍ·Ö130·Ö£¬²¢ÇÒ¿¼ÊԳɼ¨·ÖÊýÔÚ[85£¬90£©µÄѧÉúͨ¹ý×ÔÉíŬÁ¦ÄÜ´ïµ½×îµÍÆÚÍû·ÖÊý£®
£¨¢ñ£©Çó³ö¸÷·ÖÊý¶ÎµÄƵÂʲ¢×÷³öƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨¢ò£©ÓÃËù³éѧÉúµÄ³É¼¨ÔÚ¸÷¸ö·ÖÊý¶ÎµÄƵÂʱíʾ¸ÅÂÊ£¬Çë¹À¼Æ¸ÃУѧÉúÊýѧ³É¼¨´ïµ½×îµÍÆÚÍûµÄѧÉú·ÖÊýºÍÓŵÈÉúÈËÊý£»
£¨¢ó£©É迼ÊԳɼ¨ÔÚ[85£¬90£©µÄѧÉú³É¼¨ÈçÏ£º80£¬81£¬83£¬84£¬86£¬89£¬´Ó·ÖÊýÔÚ[85£¬90£©µÄѧÉúÖгéÈ¡2È˳öÀ´¼ì²éÊýѧ֪ʶµÄÕÆÎÕÇé¿ö£¬ÇóÇ¡ºÃÓÐ1ÃûѧÉúͨ¹ý×ÔÉíŬÁ¦´ïµ½×îµÍÆÚÍû·ÖÊýµÄ¸ÅÂÊ£®
·ÖÊý¶Î [70£¬80£© [80£¬90£© [90£¬100£© [100£¬110£© [110£¬120£© [120£¬130£© [130£¬140£© [140£¬150£©
ÈËÊý 9 6 12 18 21 16 12 6
ƵÂÊ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬Çҵ㣨
2
£¬
6
2
£©ÔÚÍÖÔ²CÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªµãA£¬B·Ö±ðÊÇÍÖÔ²CµÄ×óÓÒ¶¥µã£¬Ö±Ïß¾­¹ýµãBÇÒ´¹Ö±ÓÚxÖᣬµãPÊÇÍÖÔ²CÉÏÒìÓÚµãA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßAP½»ÓÚµãM£¬ÉèÖ±ÏßOM£¬PBµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇóÖ¤£ºk1•k2Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÎªÆ溯Êý£¬ÇÒµ±x£¾0ʱf£¨x£©=x2-2x£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=aÓÐÇÒ½öÓÐ2¸ö½â£¬ÔòʵÊýaµÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf(x)=tan(
¦Ð
4
x)+log
1
2
(x-
1
2
)-|tan(
¦Ð
4
x)-log
1
2
(x-
1
2
)|
ÔÚÇø¼ä(
1
2
£¬2)
ÉϵÄͼÏó´óÖÂΪ£¨¡¡¡¡£©
A¡¢
B¡¢
C¡¢
D¡¢

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸