精英家教网 > 高中数学 > 题目详情

若对任意恒成立,则m的最大值是        

 

【答案】

【解析】

试题分析:因为,令z=. 作出表示的平面区域,可知,所以的最大值为,所以的最小值为,所以,所以m的最大值是.

考点:简单的线性规划,斜率的几何意义,的单调性与最值.

点评:本小题看似是一个不等式恒成立问题,实质是一个与线性规划结合的一个函数最值题,关键是把式子,然后令z=.根据,结合z的几何意义可求出z的范围,然后求出的最小值为,问题得解。

 

练习册系列答案
相关习题

科目:高中数学 来源:湖南省澧县一中、岳阳县一中2012届高三11月联考数学文科试题 题型:022

若对任意恒成立,则m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省高考复习质量检测数学理卷 题型:解答题

请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。

(本小题满分10分)选修4—1:几何证明选讲

如图,⊙O是的外接圆,D是的中点,BD交AC于E。

   (I)求证:CD2=DE·DB。

   (II)若O到AC的距离为1,求⊙O的半径。

(本小题满分10分)

选修4—4:作标系与参数方程

已知直线的参数方程为(t为参数),曲线C的极坐标方程为,以极点为原点,极轴为x轴正半轴建立直角坐标系,M点坐标为(0,2),直线与曲线C交于A,B两点。

   (I)写出直线的普通方程与曲线C的直角坐标方程;

   (II)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值。

(本小题满分10分)选修4—5:不等式选讲

设函数

   (I)画出函数的图象;

   (II)若对任意恒成立,求a-b的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省高考复习质量检测数学理卷 题型:解答题

请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。

(本小题满分10分)选修4—1:几何证明选讲

如图,⊙O是的外接圆,D是的中点,BD交AC于E。

   (I)求证:CD2=DE·DB。

   (II)若O到AC的距离为1,求⊙O的半径。

(本小题满分10分)

选修4—4:作标系与参数方程

已知直线的参数方程为(t为参数),曲线C的极坐标方程为,以极点为原点,极轴为x轴正半轴建立直角坐标系,M点坐标为(0,2),直线与曲线C交于A,B两点。

   (I)写出直线的普通方程与曲线C的直角坐标方程;

   (II)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值。

(本小题满分10分)选修4—5:不等式选讲

设函数

   (I)画出函数的图象;

   (II)若对任意恒成立,求a-b的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津市蓟县一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

(1)设函数f(x)=x2-1,对任意恒成立,则实数m的取值范围是   
(2)函数f(x)=,若方程f(x)=x+a恰有两个不等的实根,则a的取值范围是   

查看答案和解析>>

同步练习册答案