分析 (1)由题意,可求T,A,利用周期公式求得ω,又当$x=\frac{3π}{8}$时f(x)取最大值,可得$2×\frac{3π}{8}+φ=\frac{π}{2}+2kπ,k∈Z$,结合范围-π<φ<π,可求φ,从而得解.
(2)由$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2},k∈Z$,得:$kπ-\frac{π}{8}≤x≤kπ+\frac{3π}{8},k∈Z$,结合0≤x≤π,即可得解.
(3)作出一个周期上的表格,在坐标系中描点,连线成图,
解答 解:(1)由题意,函数f(x)的周期T=4($\frac{5π}{8}$-$\frac{3π}{8}$)=π,A=2,ω=2,…(2分)
∴f(x)=2sin(2x+φ),
又当$x=\frac{3π}{8}$时f(x)取最大值,
所以,$2×\frac{3π}{8}+φ=\frac{π}{2}+2kπ,k∈Z$,
又-π<φ<π,∴$φ=-\frac{π}{4}$,
∴$f(x)=2sin({2x-\frac{π}{4}})$.…(5分)
(2)∵由$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2},k∈Z$,得:$kπ-\frac{π}{8}≤x≤kπ+\frac{3π}{8},k∈Z$,
又∵0≤x≤π,
∴$0≤x≤\frac{3π}{8}$或$\frac{7π}{8}≤x≤π$,
∴函数f(x)在[0,π]内的单调递增区间是$[{0,\frac{3π}{8}}],[{\frac{7π}{8},π}]$.…(10分)
(3)第一步画出表格如下:
2x-$\frac{π}{4}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{8}$ | $\frac{3π}{8}$ | $\frac{5π}{8}$ | $\frac{7π}{8}$ | $\frac{9π}{8}$ |
y | 0 | 2 | 0 | -2 | 0 |
点评 本题主要考查了三角函数的五点法作图,考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,此类题关键是掌握住五点法作图的规则与步骤,按要求作图即可,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{2}$,$\frac{3}{4}$] | B. | [-$\frac{3}{4}$,-$\frac{1}{2}$] | C. | [-$\frac{1}{2}$,-$\frac{1}{4}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
B. | 命题“若x=y,则sin x=sin y”的逆否命题为真命题 | |
C. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
D. | 命题“?x∈R,使得:x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com