精英家教网 > 高中数学 > 题目详情
曲线的焦点恰好是曲线的右焦点,且曲线与曲线交点连线过点,则曲线的离心率是
A.B.C.D.
D  

试题分析:因为曲线的焦点恰好是曲线的右焦点,所以=c,即p=2c,则抛物线焦点是F(c,0),则由两曲线交点之一(c,2c)在双曲线上,得:,b²=2ac
c²-2ac-a²=0,,解得e=,故选D。
点评:小综合题,涉及圆锥曲线的几何性质a,b,c,e关系的题目,常常出现。一般的,要运用函数方程思想,建立方程。本题中通过确定双曲线上的点的坐标并代入,得到e的方程,达到解题目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆C1的离心率为,直线l: y-=x+2与.以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(ll)设椭圆C1的左焦点为F1,右焦点为F2,直线l2过点F价且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(III)过椭圆C1的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,     求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,是半圆的直径,是半圆(除端点)上的任意一点.在线段的延长线上取点,使,试求动点的轨迹方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程为),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.
①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;
②若P是椭圆上的动点,则
③以焦点半径为直径的圆必与以长轴为直径的圆内切;
④若在椭圆上,则过的椭圆的切线方程是
⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.
以上说法中,正确的有                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一抛物线型拱桥,当水面离拱顶米时,水面宽米,则当水面下降米后,水面宽度为
A.9B.4.5C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面两两垂直,定点,A到距离都是1,P是上动点,P到的距离等于P到点的距离,则P点轨迹上的点到距离的最小值是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,当时,求面积的最大值.

查看答案和解析>>

同步练习册答案