精英家教网 > 高中数学 > 题目详情

等差数列中,成等比数列,求数列前20项的和

 

【答案】

330

【解析】

试题分析:设出等差数列公差,由成等比数列得,即,解得.当时,.当时,,于是

试题解析:设数列的公差为,则

成等比数列得

整理得

解得

时,

时,

于是

考点:1.等差、等比数列的性质;2.数列的求和.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x
f(x)
2
3
(x≥0)
成等差数列.又数列an(an>0)中a1=3此数列的前n项的和Sn(n∈N+)对所有大于1的正整数n都有Sn=f(Sn-1).
(1)求数列an的第n+1项;
(2)若
bn
1
an+1
 
1
an
的等比中项,且Tn为{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设m个不全相等的正数a1,a2,…,am(m≥7)依次围成一个圆圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,am的前n项和Sn(n≤m)满足:S3=15,S2009=S2007+12a1,求通项an(n≤m);
(Ⅱ)若每个数an(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}的通项公式为an=3n-1(n∈N*),等差数列{bn}中,bn>0且b1+b2+b3=15又a1+b1,a2+b2,a3+b3成等比.求:
(1)数列{bn}的通项公式.
(2)设数列cn=
1bn2-1
(n∈N*),求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}分别为等比,等差数列,数列{an}的前n项和为Sn,且S3,S2,S4成等差数列,a1+a2+a3=3,数列{bn}中,b1=a1,b6=a5
(1)求数列{an},{bn}的通项公式;
(2)若数列{anbn}的前n项和为Tn,求满足不等式Tn+2014≤0的最小正整数n.

查看答案和解析>>

同步练习册答案