精英家教网 > 高中数学 > 题目详情
若 a>0,b>0,且
1
a
+
1
b
=
ab
,求a3+b3的最小值.
考点:基本不等式
专题:不等式的解法及应用
分析:a>0,b>0,利用基本不等式可得
ab
=
1
a
+
1
b
2
ab
,ab≥2.对a3+b3利用基本不等式的性质即可得出.
解答: 解:∵a>0,b>0,
ab
=
1
a
+
1
b
2
ab

∴ab≥2.当且仅当a=b=
2
时取等号.
∴a3+b3≥2
a3b3
4
2

∴a3+b3的最小值为4
2
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=2-(
2
n
+1
)an(n∈N+).
求证:数列{
an
n
}是等比数列;
设数列{2nan}的前n项和为Tn,求数列{
1
Tn
}的前n项和为An

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
x与双曲线C:
x2
a2
+
y2
b2
=1(a>0,b>0)左右两支分别交于M、N两点,F为双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于(  )
A、
3
+
2
B、
3
+1
C、
2
+1
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中有一门相同的选法有(  )
A、6种B、12种
C、16种D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181565
64910132
(1)估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;
优分非优分合计
男生
女生
合计100
(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax2+2x+1,当x∈[1,2],总有y∈[1,4]则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a<-b<0,则|a+b|-|a-b|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别为F1、F2,且F2恰为抛物线x=
1
4
y2的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,若不等式
2
a
+
1
b
m
2a+b
恒成立,则m的最大值等于(  )
A、7B、8C、9D、10

查看答案和解析>>

同步练习册答案