精英家教网 > 高中数学 > 题目详情
15.公差为1的等差数列{an}中,Sn为其前n项的和,若仅S9在所有的Sn中取最小值,则首项a1的取值范围为(  )
A.[-10,-9]B.(-10,-9)C.[-9,-8]D.(-9,-8)

分析 利用等差数列的前n项和公式及其二次函数单调性即可得出.

解答 解:Sn=na1+$\frac{n(n-1)}{2}$
=$\frac{1}{2}{n}^{2}$+$n({a}_{1}-\frac{1}{2})$
=$\frac{1}{2}(n-\frac{1-2{a}_{1}}{2})^{2}$-$\frac{(1-2{a}_{1})^{2}}{8}$.
∵仅S9在所有的Sn中取最小值,
∴$8.5<\frac{1-2{a}_{1}}{2}$<9.5,
解得-9<a1<-8.
故选:D.

点评 本题考查了等差数列的前n项和公式及其二次函数单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知集合A={a,a2},B={1,b},若A=B,则a=-1,b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知i为虚数单位,则z•(1+i)=3-i,则复数z等于(  )
A.2-2iB.2+2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-2,-1,0,1,2},B={x|-2<x<1},则A∩B=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某工人生产合格零售的产量逐月增长,前5个月的产量如表所示:
月份x12345
合格零件y(件)50607080100
(I)若从这5组数据中抽出两组,求抽出的2组数据恰好是相邻的两个月数据的概率;
(Ⅱ)请根据所给5组数据,求出 y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并根据线性回归方程预测该工人第6个月生产的合格零件的件数.
(附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lg|2x-1|的对称轴为x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-x的图象是曲线C
(1)求曲线C在点M(t,f(t))处的切线方程;
(2)求过点P(-1,0)的曲线C的切线方程;
(3)假设a>0,如果过点(a,b)可以作曲线C的三条切线,证明:-a<b<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某个小区为了制订自行车棚的整修方案,进行了一次以家庭为单位的自行车数量调查.按照家庭成员的人数采用分层抽样的方法,一部分数据如表所示,其中m=2n.通过调查统计了每个家庭的自行车数量,将结果绘制成条形图,如图所示.
 家庭人数 1 2 3 4 5
 家庭数量 6 m 72  18
 抽样数量  4 n 10 
(1)计算这个小区的家庭总数和样本容量;
(2)根据图中所显示的统计结果,估计这个小区共有多少辆自行车.
(3)从样本中任取两个家庭,设这两个家庭的自行车数量分别为a和b,记不等式x2-ax+b≤0的解集中整数的个数为η,求η的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,满足:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,M是BC的中点.
(1)若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,求向量$\overrightarrow{AB}$+2$\overrightarrow{AC}$与向量2$\overrightarrow{AB}$+$\overrightarrow{AC}$的夹角的余弦值.
(2)若点P是边BC上一点,|$\overrightarrow{AP}$|=2,且$\overrightarrow{AP}$•$\overrightarrow{AC}$=2,$\overrightarrow{AP}$•$\overrightarrow{AB}$=1,求|$\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AP}$|的最小值.

查看答案和解析>>

同步练习册答案