精英家教网 > 高中数学 > 题目详情
13.设a∈R,若函数y=aex+3x有大于零的极值点,则实数a的取值范围是(-3,0).

分析 求导,由题意可知y′=aex+3=0有正根.则a<0,即ex=-$\frac{3}{a}$,即可求得时x=ln(-$\frac{3}{a}$).由对数的运算性质即可求得实数a的取值范围.

解答 解:求导y′=aex+3,由函数在x∈R上有大于零的极值点,即y′=aex+3=0有正根.
显然有a<0,即ex=-$\frac{3}{a}$,
此时x=ln(-$\frac{3}{a}$).
由x>0,得-$\frac{3}{a}$>1,
则-3<a<0,
实数a的取值范围(-3,0),
故答案为:(-3,0).

点评 本题考查导数的综合应用,考查导数与函数的单调及极值的关系,考查对数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.国家标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取5辆,对其氮氧化物的排放量进行检测,检测结果记录如下(单位:mg/km)
A8580856090
B7090957075
(Ⅰ)从被检测的5辆A型号的出租车和5辆B型号的出租车中分别抽取2辆,求抽取的这4辆车的氮氧化物排放量均不超过80mg/km的概率;
(Ⅱ)从被检测的5辆B种型号的出租车中任取2辆,记“氮氧化物排放量超过80mg/km”的车辆数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P为椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任意一点,F1,F2为左、右焦点,M为PF1中点.如图所示:若|OM|+$\frac{1}{2}$|PF1|=2,离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的标准方程;
(2)已知直线l经过(-1,$\frac{1}{2}$)且斜率为$\frac{1}{2}$与椭圆交于A,B两点,求弦长|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若△ABC的三个内角A,B,C满足A+C=2B,且最大边为最小边的2倍,求该三角形三个内角之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过点P(1,1)作直线l交圆x2+y2=4于A,B两点,若$|AB|=2\sqrt{3}$,则直线l的方程为x=1或y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.等腰△ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使二面角P-AE-C的大小为120°,设点P在面ABE上的射影为H.
(I)证明:点H为BE的中点;
(II)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直线BE与平面ABP所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=(1-an2-a(1-an),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}$•$\overrightarrow{AB}$≥$\overrightarrow{PA}$•$\overrightarrow{PB}$,则λ的最大值是(  )
A.$\frac{{2+\sqrt{2}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2x+2,则f(2)的值为(  )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案