精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x),定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|,当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)


  1. A.
    有最小值0,无最大值
  2. B.
    有最小值-1,无最大值
  3. C.
    有最大值1,无最小值
  4. D.
    无最小值,也无最大值
B
分析:在同一坐标系中先画出f(x)与g(x)的图象,然后根据定义画出F(x),就容易看出F(x)无最大值,有最小值-1.
解答:解:在同一坐标系中先画出f(x)与g(x)的图象,
然后根据定义画出F(x),就容易看出F(x)无最大值,
有最小值-1.
故选B.
点评:此题考查阅读能力和函数图象的画法,必须弄懂F(x)是什么.先画出|f(x)|及g(x)与-g(x)的图象.再比较|f(x)|与g(x)的大小,然后确定F(x)的图象.这是一道创新性较强的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案