精英家教网 > 高中数学 > 题目详情
满足{3,4}⊆M⊆{0,1,2,3,4}的所有集合M的个数是(  )
A、6B、7C、8D、9
考点:子集与真子集
专题:集合
分析:根据题意M中必须有3,4这两个元素,因此M的个数应为集合{1,2,3}的子集的个数.
解答: 解:根据题意:M中必须有3,4这两个元素,则M的个数应为集合{1,2,3}的子集的个数,
所以是8个
故选:C.
点评:本题主要考查子集、真子集的概念及运算.难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明:(1)2≤(1+
1
n
n<3,其中n∈N*
(2)证明:对任意非负整数n,33n-26n-1可被676整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P到点(0,-3)与到点(0,3)的距离之差为2,则点P的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是(  )
A、
1
3
B、
3
4
C、
5
8
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2+2x-6y-26=0和x2+y2-4x+2y+4=0的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,∠BAD=90°,AD∥BC,且A1A=AD=2BC=2,AB=1.点E在棱AB上,平面A1EC与棱C1D1相交于点F.
(Ⅰ)求证:A1F∥平面B1CE; 
(Ⅱ)求证:AC⊥平面CDD1C1
(Ⅲ)写出三棱锥B1-A1EF体积的取值范围.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的图象是函数f(x)=sin2x-
3
cos2x的图象向右平移
π
3
个单位得到的,则函数的图象的对称轴可以为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(x)满足对任意的x,y都有f(x+y)=f(x)+f(y)-b成立,设M,N分别为f(x)在[-b,b]上的最大值与最小值,则M+N的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,AC=
3
,∠PAB=30°,求线段PB的长.

查看答案和解析>>

同步练习册答案