精英家教网 > 高中数学 > 题目详情

设函数处取得极值,且曲线在点处的切线垂直于直线
(1)求的值;
(2)若函数,讨论的单调性.

(1)a=1,b=0;(2)见解析.

解析试题分析:(1)根据极值点,求导后可得,由在点处的切线垂直于直线可知该切线斜率为2.可得 ;(2)对 求导后对 的根的情况进行分类讨论即可.
试题解析:(1)因,又在x=0处取得极限值,故从而       ,由曲线y=处的切线与直线相互垂直可知该切线斜率为2,即.
(2)由(Ⅰ)知,,.
.
①当;
②当,g(x)在R上为增函数;
方程有两个不相等实根,
函数;
时,上为减函数;
时,上为增函数.
考点:1.导数在切线中的运用;2.导数求函数的单调性;3.分类讨论思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若,求的单调区间;
(Ⅱ) 若对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程有实数解,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)证明:若,则对于任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中.
(1)当时,求函数在区间上的最大值;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(I)求函数的单调区间;
(II)当时,若存在,使成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案