精英家教网 > 高中数学 > 题目详情

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

【答案】(1)的单调增区间为,单调减区间为;(2)实数的取值范围为.

【解析】

试题分析:(1)首先确定函数的定义域,进一步对求导,利用导函数与原函数的关系,得到原函数的单调区间;(2)“存在,对任意的,总有成立”等价于“上的最大值不小于上的最大值”进一步,分别求函数在区间上的最大值.

试题解析:(1) ,(此处若不写定义域,可适当扣分)

时,;当时,

的单调增区间为,单调减区间为

(2),则,

,故在,即函数上单调递增,

而“存在,对任意的,总有成立”等价于“上的最大值不小于上的最大值”

上的最大值为中的最大者,记为

所以有,,

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.
(1)若|AB|= ,求直线l的倾斜角;
(2)若点P(1,1),满足2 = ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有”“”“”“四个字,有放回地从中任取一个小球,取到就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生14之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有”“”“”“四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

据此估计,直到第二次就停止的概率为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0b>0)的右准线l2与一条渐近线l交于点PF是双曲线的右焦点.

(1)求证:PFl

(2)PF3,且双曲线的离心率e,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为(
A.(
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m(m为常数,且2m3),设每个水杯的出厂价为x(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.

(1)求该工厂的日利润y()与每个水杯的出厂价x()的函数关系式;

(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,若E是AB的中点,P是△ABC(包括边界)内任一点.则 的取值范围是(
A.[﹣6,6]
B.[﹣9,9]
C.[0,8]
D.[﹣2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个分类变量xy,其一组观测值如下面的2×2列联表所示:

y1

y2

x1

a

20a

x2

15a

30a

其中a,15a均为大于5的整数,则a取何值时,在犯错误的概率不超过0.1的前提下认为xy之间有关系?

查看答案和解析>>

同步练习册答案