精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E的方程: ,P为椭圆上的一点(点P在第三象限上),圆P 以点P为圆心,且过椭圆的左顶点M与点C(﹣2,0),直线MP交圆P与另一点N.

(1)求圆P的标准方程;
(2)若点A在椭圆E上,求使得 取得最小值的点A的坐标;
(3)若过椭圆的右顶点的直线l上存在点Q,使∠MQN为钝角,求直线l斜率的取值范围.

【答案】
(1)解:椭圆E的方程: ,得M(﹣10,0),C(﹣2,0))

设点P(m,n),则有

又: ,∴n=﹣4,即P(﹣6,﹣4),)

所以

所以圆P的标准方程为(x+6)2+(y+4)2=32


(2)解:∵P为MN的中点,可得N(﹣2,﹣8)

设A(x,y),∴ ,∴

得x=﹣6,y=﹣4时,∴ 最小

经检验,点A在椭圆 上∴A(﹣6,﹣4)


(3)解:设直线l:y=k(x﹣10),即直线与圆相交

所以圆心P到直线l的距离


【解析】(1)设点P(m,n),利用 ,以及椭圆方程求出m,n,然后求出半径,即可求解圆的方程.(2)由题意求出N的坐标,设A(x,y),表示出 ,求出最小值时点A的坐标.(3)设直线l:y=k(x﹣10),利用直线与圆相交,圆心P到直线l的距离小于半径,列出不等式求解即可.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2-a)x-2(1+ln x)+a,若函数f(x)在区间上无零点,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,为最高点,该图像与轴交于点轴交于点,且的面积为

(1)求函数的解析式;

(2)将函数的图像向右平移个单位,再将所得图像上各点的横坐标伸长为原来的倍,纵坐标不变,得到函数的图像,求上的单调递增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AA1平面ABCBB1AA1ABAC=3,BC=2AA1BB1=2,点EF分别为BCA1C的中点.

(1)求证:EF∥平面A1B1BA

(2)求直线A1B1与平面BCB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

x

6

8

10

12

y

2

3

5

6

(1)请在图中画出上表数据的散点图;

请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

试根据求出的线性回归方程,预测记忆力为9的同学的判断力.

相关公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不超过实数x的最大整数称为x整数部分,记作[x].已知fx)=cos([x]-x),给出下列结论:

fx)是偶函数;

fx)是周期函数,且最小正周期为π;

fx)的单调递减区间为[kk+1)(kZ);

④fx)的值域为(cos1,1].

其中正确命题的序号是______(填上所以正确答案的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点在原点,焦点在x轴的负半轴的抛物线截直线y=x所得的弦长|P1P2|=4,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.若曲线在点处的切线方程为

为自然对数的底数).

1)求函数的单调区间;

2若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,且处的切线斜率为.

(1)的值,并讨论上的单调性;

(2)设函数 ,其中,若对任意的总存在,使得成立,求的取值范围

3)已知函数,试判断内零点的个数.

查看答案和解析>>

同步练习册答案