精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3+bx2+cx(b,c∈R),且函数f(x)
在区间(-1,1)上单调递增,在区间(1,3)上单调递减.
(I)若b=-2,求c的值;
(II)当x∈[-1,3]时,函数f(x)的切线的斜率最小值是-1,求b、c的值.
分析:(I)由单调递区间的端点可得:1是极值点,从而1是导函数的一个零点,建立等式关系,求出参数c;
(II)讨论对称轴-b与区间[-1,3]的位置关系,从而研究k=f'(x)的最小值,使kmin=-1,求出满足条件的b和c即可.
解答:解:(I)由已知可得f'(1)=0,又f'(x)=x2+2bx+c
所以f'(1)=1+2b+c=0,将b=-2代入,可得c=3;
(II)令k=f'(x),则
1)若b≤-1时,kmin=f'(-1)=1-2b+c=-1
又1+2b+c=0,得b=
1
4
(舍)
2)若-1≤-b≤3,则kmin=f'(-b)=b2-2b2+c=-1
又1+2b+c=0,得b=-2,c=3或b=0,c=-1(舍)
3)若1-b>3,则kmin=f'(3)=9+6b+c=-1
又1+2b+c=0,得b=-
9
4
(舍)
综上所述,b=-2,c=3
点评:本题考查利用导数研究函数的单调性和极值,同时考查了二次函数讨论对称轴与定义域的位置关系研究函数的最值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案