分析 三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的体积即可.
解答 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC-A1B1C1的中,底面边长为1,1,$\sqrt{3}$,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为$\frac{\sqrt{3}}{2}$,
底面中心到底面三角形的顶点的距离为:1
∴球的半径为r=$\sqrt{\frac{3}{4}+1}$=$\frac{\sqrt{7}}{2}$.
四面体ABCD外接球体积为:$\frac{4π}{3}×(\frac{\sqrt{7}}{2})^{3}$=$\frac{7\sqrt{7}}{6}π$.
故答案为:$\frac{7\sqrt{7}}{6}π$.
点评 本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[-\frac{3π}{4},\frac{π}{4}]$ | B. | $[-\frac{π}{4},\frac{3π}{4}]$ | C. | $[-\frac{3π}{8},\frac{π}{8}]$ | D. | $[-\frac{π}{8},\frac{3π}{8}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com