精英家教网 > 高中数学 > 题目详情

【题目】已知函数yfx)=

(1)求yfx)的最大值;

(2)设实数a>0,求函数Fx)=afx)在[a,2a]上的最小值。

【答案】(1);(2)见解析.

【解析】

试题(1)令=0,求得极值点,因此可得到单调区间,从而得到最大值;

(2)根据(1)可知F(x)的单调性,得到F(x)[a,2a]上的最小值为F(a)F(2a)之中的较小者,作差讨论即可得到结果.

试题解析:(1).

=0得xe.

因为当x∈(0,e)时,>0,fx)在(0,e)上为增函数;

x∈(e,+∞)时,<0,fx)在(e,+∞)上为减函数,

所以fxmaxfe)=

(2)因为a>0,由(1)知,Fx) 在(0,e)上单调递增,

在(e,+∞)上单调递减,

所以Fx) 在[a,2a]上的最小值Fxmin=min{Fa),F(2a)}。

因为Fa)-F(2a)=

所以当0<a≤2时,Fa)-F(2a)≤0,FxminFa)=ln a

a>2时,Fa)-F(2a)>0,FxminF(2a)=ln2a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.将沿折起,使的位置且二面角的大小是.连接,如图:

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数)的最大值为0.

1)求实数a的值;

2)设函数,当时,求证:函数有两个不同的零点),且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于的正实数对,再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数m来估计的值.假如统计结果是那么可以估计______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年电商双十一大战即将开始.某电商为了尽快占领市场,抢占今年双十一的先机,对成都地区年龄在1575岁的人群是否网上购物的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)

年龄段

频率

0.1

0.32

0.28

0.22

0.05

0.03

购物人数

8

28

24

12

2

1

1)若以45岁为分界点,根据以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为网上购物与年龄有关?

年龄低于45

年龄不低于45

总计

使用网上购物

不使用网上购物

总计

2)若从年龄在的样本中各随机选取2人进行座谈,记选中的4人中使用网上购物的人数为,求随机变量的分布列和数学期望.

参考数据:

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1—13分别对应2017年1月—2018年1月)

由散点图选择两个模型进行拟合,经过数据处理得到两个回归方程分别为,并得到以下一些统计量的值:

残差平方和

0.000591

0.000164

总偏差平方和

0.006050

(1)请利用相关指数判断哪个模型的拟合效果更好;

(2)某位购房者拟于2018年6月份购买这个小区平方米的二手房(欲

购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效果更好的模型估算该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)

附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款),征收方式见下表:

契税

(买方缴纳)

首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且144平方米以内(含144平方米)为1.5%;面积144平方米以上或非首套为3%

增值税

(卖方缴纳)

房产证未满2年或满2年且面积在144平方米以上(不含144平方米)为5.6%;其他情况免征

个人所得税

(卖方缴纳)

首套面积144平方米以内(含144平方米)为1%;面积144平方米以上或非首套均为1.5%;房产证满5年且是家庭唯一住房的免征

参考数据:. 参考公式:相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线

1)求函数的极值;

2)试确定曲线与直线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解我校高2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2000名高三学生进行了问卷调查,统计结果如下表:

愿意参加

愿意参加

重庆一中本部校区

220

980

重庆一中大学城校区

80

720

1从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;

2对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分概率满足:假设解答各题之间没有影响

①对于一道不完全会的题,求“如花姐”得分的均值

②试求“如花姐”在本次摸底考试中总得分的数学期望

查看答案和解析>>

同步练习册答案