精英家教网 > 高中数学 > 题目详情
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=45°.
(I)求证:平面VAB⊥平面VCD;
(II)求异面直线VD和BC所成角的余弦.
分析:(I)根据线线垂直⇒线面垂直,再由线面垂直⇒面面垂直.
(II)通过作平行线,作出异面直线所成的角,再在三角形中求角.
解答:解:(Ⅰ)∵AC=BC=a,∴△ACB是等腰三角形,又D是AB的中点,∴CD⊥AB,
又VC⊥底面ABC.AB?平面ABC,
∴VC⊥AB.∵VC∩CD=C,
∴AB⊥平面VCD.又AB?平面VAB,
∴平面VAB⊥平面VCD.
(Ⅱ) 过点D在平面ABC内作DE∥BC交AC于E,
则∠VDE就是异面直线VD和BC所成的角.
在△ABC中,AB=
2
a⇒CD=
2
2
a
,又∠VDC=450⇒VC=
2
2
a⇒VD=a

∵BC⊥平面VAC,∴DE⊥平面VAC,∴△VDE为直角三角形,VD=a,DE=
1
2
a
VE=
a2
4
+
a2
2
=
3
2
a

cos∠VDE=
VD2+DE2-VE2
2VD•DE
=
a2+
a2
4
-
3a2
4
2a•
1
2
a
=
1
2

∴异面直线VD和BC所成角的余弦
1
2
点评:本题考查面面垂直的判定及异面直线所成的角.求异面直线所成的角的步骤:1、作角(平行线);2、证角(符合定义);3、求角(解三角形).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<
π
2
).
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当确定角θ的值,使得直线BC与平面VAB所成的角为
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<
π2
)

(1)求证:平面VAB⊥平面VCD;
(2)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥V-ABC中,VA⊥平面ABC,∠ABC=90°,且AC=2BC=2VA=4.
(1)求证:平面VBA⊥平面VBC;
(2)求二面角A-VC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年山西省忻州实验中学高考数学一模试卷(理科)(解析版) 题型:解答题

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ
(1)求证:平面VAB⊥平面VCD;
(2)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.

查看答案和解析>>

同步练习册答案