精英家教网 > 高中数学 > 题目详情
已知函数f(x)是偶函数,且f(x)=f(x-2),当x∈(0,1)时,f(x)=2x-1,则f(log210)的值为
3
5
3
5
分析:哟条件吧要求的式子化为f(log2
8
5
),再根据x∈(0,1)时,f(x)=2x-1可得f(log2
8
5
)=2log2
8
5
-1,运算求得结果.
解答:解:由函数f(x)是偶函数,且f(x)=f(x-2),
可得 f(log210)=f(log210-4)=f(log210-log216)
=f(log2
5
8
)=f(-log2
5
8
)=f(log2
8
5
).
再由 0<log2
8
5
<1,以及 x∈(0,1)时,f(x)=2x-1,
可得 f(log2
8
5
)=2log2
8
5
-1=
8
5
-1=
3
5

故答案为
3
5
点评:本题主要考查函数的奇偶性和周期性、对数的运算性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)的奇偶性;
(3)求函数h(x)在(0,
2
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);    
(2)判断函数f(x)+g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);
(2)判断函数f(x)+g(x)的奇偶性.
(3)求函数f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

同步练习册答案