精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

【答案】(1),(2)

【解析】分析:(Ⅰ)将直线的参数方程中的参数消掉,得到直线的普通方程,将曲线的极坐标方程等号两边同乘以再根据平面直角坐标与极坐标之间的转换关系,求得结果;

(Ⅱ)根据题意,得到相应点的坐标,代入,求得对应直线的斜率,两个方程联立,求得弦的中点,之后应用两点间距离公式求得结果.

详解:(Ⅰ)消去直线的参数方程中的参数,得到直线的普通方程为:,把曲线的极坐标方程 左右两边同时乘以,得到:

利用公式代入,化简出曲线的直角坐标方程:

(Ⅱ)点的直角坐标为,将点的直角坐标为代入直线中,得,即,联立方程组:,得中点坐标为

从而.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2sinx,-1),,函数fx)=

(1)求函数fx)的对称中心;

(2)设ABC的内角ABC所对的边为abc,且a2=bc,求fA)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】50名学生调查对AB两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对AB都不赞成的学生数比对AB都赞成的学生数的三分之一多1. 问对AB都赞成的学生有____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的值;

(2)设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元.现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:

根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率.

(Ⅰ)求出甲生产三等品的概率;

(Ⅱ)求出乙生产一件产品,盈利不小于30元的概率;

(Ⅲ)若甲、乙一天生产产品分别为30件和40件,估计甲、乙两人一天共为企业创收多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰直角中,分别为的中点,,将沿折起,使得二面角.

(1)作出平面和平面的交线,并说明理由;

(2)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整;函数的解析式为= (直接写出结果即可);

(2)求函数的单调递增区间;

(3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个乒乓球,其中有5个白球,3个红球,这些乒乓球除颜色外完全相同.从袋中随机取出一球,如果取出红球,则把它放回袋中;如果取出白球,则该白球不再放回,并且另补一个红球放入袋中,重复上述过程次后,袋中红球的个数记为.

(I)求随机变量的概率分布及数学期望

(Ⅱ)求随机变量的数学期望关于的表达式.

查看答案和解析>>

同步练习册答案