精英家教网 > 高中数学 > 题目详情
函数f(x)=x-
alnx
x
,其中a为常数.
(1)证明:对任意a∈R,函数y=f(x)图象恒过定点;
(2)当a=1时,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求实数b的取值范围;
(3)若对任意a∈[m,0)时,函数y=f(x)在定义域上恒单调递增,求m的最小值.
(1)证明:令lnx=0,得x=1,且f(1)=1,
∴函数y=f(x)图象恒过定点(1,1).                …(2分)
(2)当a=1时,f(x)=x-
lnx
x

f′(x)=1-
1-lnx
x2
,即f′(x)=
x2+lnx-1
x2

令f'(x)=0,得x=1.
x (0,1) 1 (1,+∞)
f'(x)
-
0 +
f(x) 极小值
∴fmin(x)=f(1)=1,
∵f(x)+2b≤0在x∈(0,+∞)上有解,
∴-2b≥fmin(x),即-2b≥1,
∴实数b的取值范围为(-∞,-
1
2
]
.…(9分)
(3)f′(x)=1-
a-alnx
x2
,即f′(x)=
x2+alnx-a
x2
,令h(x)=x2+alnx-a,
由题意可知,对任意a∈[m,0),f'(x)≥0在x∈(0,+∞)恒成立,
即h(x)=x2+alnx-a≥0在x∈(0,+∞)恒成立.
h′(x)=2x+
a
x
=
2x2+a
x
,令h'(x)=0,得x=-
-
a
2
(舍)或
-
a
2

列表如下:
x (0,
-
a
2
-
a
2
-
a
2
,+∞)
h'(x) - 0 +
h(x) 极小值
hmin(x)=h(
-
a
2
)=(ln
-
a
2
-
3
2
)a≥0
,解得a≥-2e3
∴m的最小值为-2e3.                                 …(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

分段函数f(x)=
x,x>0
-x,x≤0
可以表示为f(x)=|x|,同样分段函数f(x)=
x ,x≤3
3 ,x>3
可以表示为f(x)=
1
2
(x+3-|x-3|),仿此,分段函数f(x)=
3 ,x<3
x ,x≥3
可以表示为f(x)=
1
2
(x+3-|x-3|)
1
2
(x+3-|x-3|)
,分段函数f(x)=
a ,x≤a
x ,a<x<b
b ,x≥b
可以表示为f(x)=
1
2
(a+b+|x-a|-|x-b|)
1
2
(a+b+|x-a|-|x-b|)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案