精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(x+
π
6
)cosx-
1
2

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,若f(A)=
3
2
,∠B=
π
4
,AC=2,求△ABC的面积.
考点:两角和与差的正弦函数,正弦函数的单调性
专题:三角函数的求值
分析:(Ⅰ)利用两角和与差的三角函数,化简函数为 一个角的一个三角函数的形式,然后求解函数f(x)的单调递增区间;
(Ⅱ)通过f(A)=
3
2
,∠B=
π
4
,化简函数的解析式,利用角的范围求出角,分情况求解△ABC的面积.
解答: 解:(Ⅰ)f(x)=2(
3
2
sinx+
1
2
cosx)cosx-
1
2
=
3
sinxcosx+cos2x-
1
2

=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6

令-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ得
x∈[-
π
3
+kπ,
π
6
+kπ](k∈Z)
即函数f(x)的单调递增区间为[-
π
3
+kπ,
π
6
+kπ](k∈Z)

(Ⅱ)∵0<A<π
π
6
<2A+
π
6
13
6
π,f(A)=sin(2A+
π
6
)=
3
2

∴2A+
π
6
=
π
3
或2A+
π
6
=
2
3
π,
即A=
π
12
或A=
π
4

①当A=
π
12
时,C=
2
3
π,a=2
2
sinA=
6
-
2
4
•2
2
=
3
-1,S△ABC=
1
2
absinC=
3-
3
2
 
②当A=
π
4
时,C=
π
2
,S△ABC=
1
2
ab=2
点评:本题考查两角和与差的三角函数二倍角公式的应用,正弦函数的单调增区间的求法,三角形的面积考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,an.Sn满足(t-1)Sn=t(an-2)(t为常数,t≠0且t≠1).
(1)求数列{an}的通项公式;
(2)设bn=(-an)•log3(1-Sn),当t=
1
3
时,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,2]上随机选取一个数x,使得函数y=
x+1
有意义的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

用两个平行平面同截一个直径为20cm的球面,所得截面圆的面积分别是64πcm2、36πcm2,则这两个平面间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
n-1
n
an-1(n≥2),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=lnx,x>1},集合B={x|y=
4-x2
},则A∩∁RB=(  )
A、∅
B、(0,2]
C、(2,+∞)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

确定下列三角函数值的符号:(1)tan505°(2)tan(-
23π
4
)(3)cos(-
59π
17

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-3的零点所在的区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

同步练习册答案