分析 (1)由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,利用向量法能证明A1D⊥DC.
(2)求出平面A1BE的一个向量和平面A1BC的一个法向量,利用向量法能求出二面角E-A1B-C的余弦值.
(3)设$\frac{EP}{EB}$=λ(0≤λ≤1),$\overrightarrow{{A}_{1}P}$=$\overrightarrow{{A}_{1}E}+\overrightarrow{EP}$=$\overrightarrow{{A}_{1}E}+λ\overrightarrow{EB}$=(-2,2λ,0),求出平面A1DP的法向量和平面A1BC法向量,利用向量法能求出在线段EB上存在一点P,使平面A1DP⊥平面A1BC.
解答 证明:(1)∵在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,
将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.
∴由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,
由题意得DE=2$\sqrt{3}$,从而A1(2,0,0),B(0,2,0),C(0,4,2$\sqrt{3}$),D(0,0,2$\sqrt{3}$),
∴$\overrightarrow{{A}_{1}D}$=(-2,0,2$\sqrt{3}$),$\overrightarrow{DC}$=(0,4,0),
∵$\overrightarrow{{A}_{1}D}$•$\overrightarrow{DC}$=0,∴A1D⊥DC.
解:(2)平面A1BE的一个向量$\overrightarrow{n}$=(0,0,1),
$\overrightarrow{B{A}_{1}}$=(2,-2,0),$\overrightarrow{BC}$=(0,2,2$\sqrt{3}$),
设平面A1BC的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{B{A}_{1}}=2x-2y=0}\\{\overrightarrow{m}•\overrightarrow{BC}=2y+2\sqrt{3}z=0}\end{array}\right.$,令z=1,则$\overrightarrow{m}$=(-$\sqrt{3}$,-$\sqrt{3}$,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{7}}{7}$,
∴二面角E-A1B-C的余弦值为-$\frac{\sqrt{7}}{7}$.
(3)若存在一点P,使平面A1DP⊥平面A1BC,
设$\frac{EP}{EB}$=λ(0≤λ≤1),$\overrightarrow{{A}_{1}P}$=$\overrightarrow{{A}_{1}E}+\overrightarrow{EP}$=$\overrightarrow{{A}_{1}E}+λ\overrightarrow{EB}$=(-2,2λ,0),
$\overrightarrow{{A}_{1}D}$=(-2,0,2$\sqrt{3}$),
设平面A1DP的法向量$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}P}=-2a+2bλ=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=-2a+2\sqrt{3}c=0}\end{array}\right.$,令c=λ,则$\overrightarrow{n}$=($\sqrt{3}λ,\sqrt{3},λ$),
则平面A1BC法向量$\overrightarrow{m}$=(-$\sqrt{3},-\sqrt{3}$,1),
∵平面A1DP⊥平面A1BC,
∴$\overrightarrow{m}•\overrightarrow{n}$=-3λ-3+λ=0,
解得λ=-$\frac{3}{2}$,与0≤λ≤1矛盾,
∴在线段EB上存在一点P,使平面A1DP⊥平面A1BC.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,考查线段比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | 二次函数:y=2t2 | B. | 幂函数:y=t3 | ||
C. | 指数函数:y=2t | D. | 对数函数:y=log2t |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,+∞) | B. | [2,+∞) | C. | (0,2] | D. | [2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0<x<3} | B. | {x|0<x<5} | C. | {x|3<x<5} | D. | {x|x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | ($\frac{1}{e}$,1) | C. | (2,3) | D. | (e,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com