精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(3,-1),若($\overrightarrow{b}$+λ$\overrightarrow{a}$)⊥$\overrightarrow{c}$,则实数λ=1.

分析 由已知求出$\overrightarrow{b}$+λ$\overrightarrow{a}$的坐标,利用向量垂直的坐标关系得到关于λ的方程解之.

解答 解:由已知得$\overrightarrow{b}$+λ$\overrightarrow{a}$=(λ,1+2λ),
又($\overrightarrow{b}$+λ$\overrightarrow{a}$)⊥$\overrightarrow{c}$,
所以($\overrightarrow{b}$+λ$\overrightarrow{a}$)•$\overrightarrow{c}$=0,即3λ-(1+2λ)=0,则实数λ=1;
故答案为:1.

点评 本题考查了平面向量的坐标运算以及向量垂直,数量积为0的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.数列{an}满足a1=1,an=$\frac{1}{2}$an-1+1(n≥2).
(1)若bn=an-2,求证:{bn}为等比数列;
(2)求{an}的通项公式;
(3)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{7π}{12}$
Asin(ωx+φ)0-5
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=3,M是OB1与BO1的交点,则M点的坐标是$(1,\frac{3}{2},\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=($\overrightarrow{a}$x+$\overrightarrow{b}$)2为偶函数,则向量$\overrightarrow{a}$,$\overrightarrow{b}$可以是(  )
A.$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(-1,1)B.$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(2,-2)C.$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(2,-2)D.$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin($\frac{π}{3}x$+φ),(A>0,0<φ<$\frac{π}{2}$),y=f(x)的部分图象如图所示,P,Q分别为该图象上相邻的最高点和最低点,点P在x轴上的射影为R(1,0),cos∠PRQ=-$\frac{4}{5}$.
(1)求A,φ的值;
(2)求函数f(x)的单调增区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a>0,函数f(x)=lnx+$\frac{1}{ax}$在[1,+∞)上是增函数,实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.${∫}_{0}^{1}$(2x+2)dx=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是等差数列,且a6+a7=10,则在(x-a1)(x-a2)…(x-a12)的展开式中,x11项的系数是(  )
A.60B.-60C.30D.-30

查看答案和解析>>

同步练习册答案