精英家教网 > 高中数学 > 题目详情
4.已知气象台A向西300km处,有个台风中心,已知台风以每小时40$\sqrt{2}$km的速度向东北方向移动,距台风中心100$\sqrt{5}$km以内的地方都处在台风圈内,问:从现在起,多长时间后,气象台A进入台风圈?气象台A处在台风圈内的时间是多长?

分析 建立直角坐标系,可得t小时后,B的坐标为(-300+40$\sqrt{2}$tcos45°,40$\sqrt{2}$tsin45°),利用B在圆上或圆内时,气象台将受台风影响,即可得出结论.

解答 解:以气象台为坐标原点,正东方向为x轴正方向,建立直角坐标系,则现在台风中心B1的坐标为(-300,0).
根据题意,可知,t小时后,B的坐标为(-300+40$\sqrt{2}$tcos45°,40$\sqrt{2}$tsin45°),
即(-300+40t,40t),
因为以台风中心为圆心,以100$\sqrt{5}$千米为半径的圆上或圆内的点将遭受台风影响,
所以B在圆上或圆内时,气象台将受台风影响.
所以令|AB|≤100$\sqrt{5}$,即(-300+40t)2+(40t)2≤(100$\sqrt{5}$)2
整理得2t2-15t+25≤0解得2.5≤t≤5
故大约2.5小时后,气象台A所在地将遭受台风影响,大约持续2.5个半小时.

点评 本题给出实际应用问题,求台风影响气象台的时长.着重考查了圆的标准方程等知识,考查了直线与圆的知识在实际问题中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设Sn是等差数列{an}的前n项和,若a2+a7-a5=6,则S7=42.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的不等式ax2+bx+c>0解集为(1,3),则cx2+bx+a<0的解集为(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知二次函数f(x)=2x2+1,
(1)判断函数的奇偶性
(2)用定义证明函数f(x)=2x2+1是[0,+∞)上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}$AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=$\frac{1}{3}$PD,求异面直线AE与PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2-6x-8y+21=0和直线l:kx-y-4k+3=0.
(1)证明:直线l恒过定点,并求出该定点;
(2)证明:不论k取何值,直线l和圆C总相交;
(3)当k取何值时,圆C被直线l截得的弦长最短?并求最短的弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙两人分别摇一个正方形骰子,骰子的每一面上分别标有1、2、3、4、5、6这六个数字,记骰子朝上的一面所标数字分别为两人的得分.
(1)若两人谁的得分高谁就获胜(若得分相同则为平局),求甲获胜的概率;
(2)若规定甲、乙两人的得分之和小于等于a(a∈[2,12])时,甲就获胜,否则乙获胜.问当a取何值时,甲获胜的概率大于乙获胜的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若2sin2α+sin2β-2sinα=0,则cos2α+cos2β的取值范围为[1,2].

查看答案和解析>>

同步练习册答案