精英家教网 > 高中数学 > 题目详情

已知向量,函数

(1)求函数的解析式及其单调递增区间;

(2)在中,角为钝角,若.求的面积。

 

【答案】

(1) ,单调递增区间为

(2).

【解析】

试题分析:(1)

 

得:

单调递增区间为           6分

(2) 

为钝角,所以                           8分

由正弦定理可得:,而

                                    10分

                      12分

考点:本题主要考查平面向量的数量积,平面向量的坐标运算,正弦定理、余弦定理的应用,和差倍半的三角函数公式。

点评:典型题,属于常见题型,根据已知条件,灵活运用数量积及三角公式化简,并进一步研究正弦型函数的性质。综合应用正弦定理、余弦定理,得到三角形边角关系,利用三角形面积公式,达到解题目的。

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届广东省实验中学、华师附中、深圳中学、广雅中学高三上学期期末数学文卷 题型:解答题

(本小题满分12分)
已知向量,函数 
(1)求的最小正周期;
(2)若,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省六校教育研究会高三2月联考理科数学试卷(解析版) 题型:解答题

已知向量,函数

最大值;

中,设角的对边分别为,若,且?,求角的大小.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市育才中学高三(上)10月月考数学试卷(文科)(解析版) 题型:解答题

已知向量,函数
(1)求函数f(x)的解析式;
(2)当x∈[0,π]时,求f(x)的单调递增区间;
(3)说明f(x)的图象可以由g(x)=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省五校高三下学期第二次联考理科数学试卷(解析版) 题型:解答题

已知向量,函数

(Ⅰ)若方程上有解,求的取值范围;

(Ⅱ)在中,分别是A,B,C所对的边,当(Ⅰ)中的取最大值且时,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010年南安一中高一下学期期末考试数学卷 题型:解答题

(本小题满分12分)

已知向量,函数

(1)求函数的最小正周期以及单调递增区间;

(2)若时, 求的值域;

(3)求方程内的所有实数根之和.

 

查看答案和解析>>

同步练习册答案