精英家教网 > 高中数学 > 题目详情
15.求下列各式的值:
(1)5sin90°+2cos0°-3sin270°+10cos180°
(2)sin$\frac{π}{6}$-cos2$\frac{π}{4}$cosπ-$\frac{1}{3}$tan2$\frac{π}{3}$-cosπ+sin$\frac{π}{2}$.

分析 直接利用特殊角的三角函数求解即可.

解答 解:(1)5sin90°+2cos0°-3sin270°+10cos180°
=5+2+3-10=0;------------------------7'
(2)sin$\frac{π}{6}$-cos2$\frac{π}{4}$cosπ-$\frac{1}{3}$tan2$\frac{π}{3}$-cosπ+sin$\frac{π}{2}$=$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}×3+1+1$=2;--------------7'

点评 本题考查特殊角的三角函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设集合A={y|y=2x+1,x<1},B={x|-1-a≤ax+1≤1+a},若A∪B=B,
(1)求集合A;
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果实数x、y满足关系$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{4x-y+4≥0}\end{array}\right.$,则(x-2)2+y2的最小值是(  )
A.2B.4C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$,则目标函数z=x+2y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A是圆上一定点,在圆上其他位置上任取一点B,则AB的长度小于半径的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=sinx(0≤x≤π)与直线$y=\frac{1}{2}$围成的封闭图形的面积是$\sqrt{3}$-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=4x-\sqrt{2x-1}$的值域为[$\frac{15}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.边长为1的正方形ABCD,将△ABC沿对角线AC折起,使△ABD为正三角形,则直线BD和平面ABC所成的角的大小为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1的直线l与双曲线C的左、右两支分别相交于点P,Q,若△PQF2是以∠Q为直角的等腰直角三角形,则双曲线C的离心率是$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

同步练习册答案