精英家教网 > 高中数学 > 题目详情
11.如图,已知四边形ABCD内接于抛物线x2=y,点C(3,9),AC平行于x轴,BD平行于该抛物线在点C处的切线,∠BAD=90°.
(Ⅰ)求直线BD的方程;
(Ⅱ)求四边形ABCD的面积.

分析 (Ⅰ)求导数,求出A的坐标,设直线BD的方程为y=6x+b,代入抛物线x2=y,利用∠BAD=90°,即可求直线BD的方程;
(Ⅱ)四边形ABCD的面积转化为两个三角形的面积的和.

解答 解:(Ⅰ)y′=2x,x=3时,y′=6,A(-3,9)
设直线BD的方程为y=6x+b,代入抛物线x2=y,可得x2-6x-b=0
设B(x1,y1),D(x2,y2),∴x1+x2=6,x1x2=-b
∵∠BAD=90°,
∴kADkAB=$\frac{{y}_{2}-9}{{x}_{2}+3}$•$\frac{{y}_{1}-9}{{x}_{1}+3}$=(x2-3)(x1-3)=-b-3×6+9=-1∴b=-8,
∴直线BD的方程为y=6x-8;
(Ⅱ)b=-8,x2-6x-b=0的根为2,4,对应的纵坐标为4,16,
∴四边形ABCD的面积S=$\frac{1}{2}×6×(16-4)$=36.

点评 本题考查直线方程,考查直线与抛物线的位置关系,考查面积的计算,正确求出直线的方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.点P(1,-1)到直线x-y-4=0的距离是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\left\{\begin{array}{l}x={x_0}+at\\ y={y_0}+bt\end{array}\right.$(t为参数)上的两个点A,B对应参数分别为t1,t2,则|AB|=(  )
A.|t1-t2|B.$\sqrt{{a^2}+{b^2}}|{{t_1}-{t_2}}|$C.$\frac{{|{{t_1}-{t_2}}|}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{{|{{t_1}-{t_2}}|}}{{{a^2}+{b^2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a<b,把函数y=h(x)的图象与直线x=a,x=b及y=0所围成图形的面积与b-a的比值称为函数y=h(x)在[a,b]上的“面积密度”
(I)设f(x)=x1nx-x,曲线y=f(x)与直线y=x+b相切,求b的值;
(II)设0<a<b,求μ的值(用a,b表示)使得函数g(x)=|lnx-lnμ|在区间(a,b)上的“面积密度”取得最小值;
(III)记(2)中的最小值为φ(a,b),求证:φ(a,b)<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三棱锥P-ABC中,$AB=AC=\sqrt{2}$,AP=BC=2,$BP=\sqrt{6}$,BC⊥AP,则此三棱锥的外接球的体积为(  )
A.$\frac{{4\sqrt{2}π}}{3}$B.$\frac{{8\sqrt{2}π}}{3}$C.$\frac{{16\sqrt{2}π}}{3}$D.$\frac{{32\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC三内角A,B,C的对边分别为a,b,c,若bcosA+acosB=-4ccosC,且c=$\sqrt{15}$.
(1)求cosC;
(2)求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“x=1”是“x2-1=0”的(  )
A.充分必要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数(1+i)(1-i)=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为 $\stackrel{∧}{y}$=0.01x+0.5,则加工600个零件大约需要的时间为 (  )
A.6.5hB.5.5hC.3.5hD.0.5h

查看答案和解析>>

同步练习册答案