精英家教网 > 高中数学 > 题目详情

【题目】设集合{123,…,n}(其中n3n),将的所有3元子集(含有3个元素的子集)中的最小元素的和记为.

1)求的值;

2)试求的表达式.

【答案】12

【解析】

1)根据的所有3元子集(含有3个元素的子集)中的最小元素的和记为,得到 ,再求的值.

2)根据三元子集的定义,最小元素为1的三元子集个数为,最小元素为2的三元子集个数为,最小元素为3的三元子集个数为……最小元素为n2的三元子集个数为,则,然后利用性质求解.

1,其所有三元子集为,故

,其所有三元子集为,故

,,其所有三元子集为,故

2的所有三元子集中:

最小元素为1的三元子集个数为

最小元素为2的三元子集个数为

最小元素为3的三元子集个数为

……

最小元素为n2的三元子集个数为

……

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)试讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得 ,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是边长为2的正三角形,是等腰直角三角形.沿其斜边翻折到,使,设的中点.

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1是淋浴房示意图,它的底座是由正方形截去一角得到,这一角是一个与正方形两邻边相切的圆的圆弧(如图2.现已知正方形的边长是1米,设该底座的面积为S平方米,周长为l米(周长是指图2中实线部分),圆的半径为r.设计的理想要求是面积S尽可能大,周长l尽可能小,但显然Sl都是关于r的减函数,于是设,当的值越大,满意度就越高.试问r为何值时,该淋浴房底座的满意度最高?(解答时π3代入运算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

女员工

16

男员工

14

合计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)讨论函数在区间上的单调性;

2)已知,若对任意,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】火箭少女101的新曲《卡路里》受到了广大听众的追捧,歌词积极向上的体现了人们对于健康以及完美身材的渴望.据有关数据显示,成年男子的体脂率在14%-25%之间.几年前小王重度肥胖,在专业健身训练后,身材不仅恢复正常,且走上美体路线.通过整理得到如下数据及散点图.

健身年数

1

2

3

4

5

6

体脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根据散点图判断,哪一个模型更适宜作为体脂率关于健身年数的回归方程模型(给出选择即可)

2)根据(1)的判断结果与题目中所给数据,建立的回归方程.(保留一位小数)

3)再坚持3年,体脂率可达到多少.

参考公式:

参考数据:

查看答案和解析>>

同步练习册答案