精英家教网 > 高中数学 > 题目详情
f(x)=x2+lg(x+
1+x2
)
,且f(2)=4.627,则f(-2)的值为
3.373
3.373
分析:先设g(x)=lg(x+
1+x 2
);得到其为奇函数,求出g(-2)=-g(2),再结合f(-2)=4+g(-2)=4-g(2)=4-[f(2)-4]进而求出结论.
解答:解:设g(x)=lg(x+
1+x 2
).
∴g(-x)=lg(-x+
1+x2
)=lg
1
x+
1+x2
=-lg(x+
1+x2
);
故g(-2)=-g(2).
因为:f(x)=x2+lg(x+
1+x2
)

所以;f(x)=x2+g(x);
则f(2)=4+g(2)
∴f(-2)=4+g(-2)=4-g(2)=4-[f(2)-4]
=8-f(2)=8-4.627=3.373.
故答案为:3.373.
点评:本题主要考察函数的值以及函数奇偶性的应用.解决本题的关键在于先设g(x)=lg(x+
1+x 2
);得到其为奇函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对于任意x1,x2∈R,存在正实数L,使得|f(x1)-f(x2)|≤L|x1-x2|都成立.
(1)若f(x)=
1+x2
,求L的取值范围;
(2)当0<L<1时,数列{an}满足an+1=f(an),n=1,2,….
①证明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|

②令Ak=
a1+a2+…ak
k
(k=1,2,3,…)
,证明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题,其中所有正确命题的序号为
①③
①③

①函数f(x)=
x2-2x
+2
x2-5x+4
的最小值为l+2
2

②已知函数f (x)=|x2-2|,若f (a)=f (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1;
③命题“函数f(x)=xsinx+1,当x1,x2[-
π
2
π
2
]
,且|x1|>|x2|时,有f (x1)>f(x2)”是真命题;
④“a=
1
0
1-x2
dx
”是函数“y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
⑤已知等差数列{an}的前n项和为Sn,
OA
OB
为不共线向量,又
OP
=a
OA
+a2012
OB
,若
PA
PB
,则S2012=2013.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x,x∈[0,1)
-(0.5)|x-1.5|,x∈[1,2)
若x∈[-4,-2]时,f(x)≥
t
4
-
1
2t
恒成立,则实数t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(x2-2ax)ex ,x>0
bx  x≤0
,g(x)=clnx+b,且x=
2
是函数f(x)的极值点.
(1)求实数a的值;
(2)若方程f(x)-m=0有两个不相等的实数根,求实数m的取值范围;
(3)若直线l是函数f(x)的图象在点(2,f(2))处的切线,且直线l与函数g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],求实数b的取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+x2-x,a∈R

(1)若函数 在x=1处的切线l与直线y=4x+3平行,求实数a的值;
(2)若函数f(x)在(2,+∞)上存在单调递增区间,求实数a的取值范围;
(3)在(1)的条件下,设函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案