精英家教网 > 高中数学 > 题目详情
10.与函数y=x是同一个函数的是(  )
A.$y=\sqrt{{x}^{2}}$B.$y={a}^{{log}_{a}x}$C.$y=\frac{{x}^{2}}{x}$D.$y={log}_{a}{a}^{x}$

分析 根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.

解答 解:对于A,y=$\sqrt{{x}^{2}}$=|x|(x∈R),与y=x(x∈R)的对应关系不同,∴不是同一函数;
对于B,y=${a}^{{log}_{a}x}$=x(x>0),与y=x(x∈R)的定义域不同,∴不是同一函数;
对于C,y=$\frac{{x}^{2}}{x}$=x(x≠0),与y=x(x∈R)的定义域不同,∴不是同一函数;
对于A,y=logaax=x(x∈R),与y=x(x∈R)的定义域相同,对应关系也相同,∴是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax3+bx2+cx+d是奇函数,并且f(1)=1,f(2)=14,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解关于x的方程:
(1)3(a+x)=x;
(2)$\frac{1}{2}$(a-2x)=3(x-a);
(3)x+2(a+x)=0;
(4)3a+4(b-x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某民营企业家去年为西部山区80名贫困大学生捐奖学金共50万元,该企业家计划从今年起(今年为第一年)10年内每年捐资总金额都比上一年增加10万元,资助的贫困大学生每年净增a人.
(1)当a=10时,在计划时间内,每年的受捐贫困大学生人均获得的奖学金是否超过0.8万元?请说明理由.
 (2)为使人均奖学金年年有增加,资助的大学生每年净增人数不超过多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①函数f(x)=2x-log2x的零点有2个;
②函数y=f(1-x)与函数y=f(1+x)的图象关于直线x=1对称;
③$\sqrt{x-1}$(x-2)≥0的解集为[2,+∞);
④“x<1”是“x<2”的充分不必要条件;
⑤函数y=x3在原点O(0,0)处的切线是x轴.
其中真命题的序号是④⑤(写出所有正确的命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an},{bn}均为等差数列,$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{b}_{n}}$=4,计算:$\underset{lim}{n→∞}$$\frac{{b}_{1}+{b}_{2}+…+{b}_{n}}{n{a}_{3n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=$\left\{\begin{array}{l}{a{x}^{2},x≤0}\\{(a-4)x+a-3,x>0}\end{array}\right.$,是定义域上的减函数,则实数a的取值范围的(  )
A.a>0B.a<4C.0<a≤3D.3≤a<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足$\frac{\overline{z}}{1+i}$=2i,其中i为虚数单位,则z=(  )
A.2-2iB.-2-2iC.-2+2iD.2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知 A(-2,3)、B(4,-3)两点,则线段AB的中点坐标是(  )
A.(3,0)B.(2,3)C.(3,3)D.(1,0)

查看答案和解析>>

同步练习册答案