精英家教网 > 高中数学 > 题目详情

【题目】已知圆C经过点A(﹣13),B(33)两点,且圆心C在直线xy+10上.

(1)求圆C的方程;

(2)求经过圆上一点A(﹣13)的切线方程.

【答案】(1)(x1)2+(y2)25;(2)2xy+50

【解析】

(1)根据题意,设圆心的坐标为(ab),则有ab+10,由AB的坐标可得AB的垂直平分线的方程,联立两直线方程可得圆心的坐标,则有r2|AC|2,计算可得圆的半径,由圆的标准方程的形式分析可得答案;

(2)根据题意,A(﹣13)在圆C上,求出AC的斜率,由垂直可得切线的斜率,由直线的点斜式方程即可得切线的方程.

解:(1)根据题意,设圆心的坐标为(ab),

圆心C在直线xy+10上,则有ab+10

C经过点A(﹣13),B(33)两点,则AB的垂直平分线的方程为x1,则有a1

则有,解可得b2

则圆心的坐标为(12),半径r2|AC|24+15

则圆C的方程为(x1)2+(y2)25

(2)根据题意,圆C的方程为(x1)2+(y2)25,有A(﹣13)在圆C上,有KAC

则切线的斜率k2

则切线的方程为y32(x+1),变形可得2xy+50

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】Fibonacci数列又称黄金分割数列,因为当n趋向于无穷大时,其相邻两项中的前项与后项的比值越来越接近黄金分割数.已知Fibonacci数列的递推关系式为

1)证明:Fibonacci数列中任意相邻三项不可能成等比数列;

2Fibonacci数列{an}的偶数项依次构成一个新数列,记为{bn},证明:{bn1-H2·bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的左、右焦点分别为,短轴的两端点分别为,线段的中点分别为,且四边形是面积为8的矩形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过作直线交椭圆于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)讨论的单调性;

(II)当,是否存在实数,使得,都有?若存在求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为

(Ⅰ)求直方图中的值

(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿

(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于40分钟的人数记为,求的分布列和数学期望.(以直方图中频率作为概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,,点中点,平面

(1)求证:平面.

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,为棱的中点.

求证:(1)平面

(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(1)判断函数极值点的个数,并说明理由;

(2)若 ,求的取值范围.

查看答案和解析>>

同步练习册答案