【题目】已知圆C经过点A(﹣1,3),B(3,3)两点,且圆心C在直线x﹣y+1=0上.
(1)求圆C的方程;
(2)求经过圆上一点A(﹣1,3)的切线方程.
【答案】(1)(x﹣1)2+(y﹣2)2=5;(2)2x﹣y+5=0.
【解析】
(1)根据题意,设圆心的坐标为(a,b),则有a﹣b+1=0,由AB的坐标可得AB的垂直平分线的方程,联立两直线方程可得圆心的坐标,则有r2=|AC|2,计算可得圆的半径,由圆的标准方程的形式分析可得答案;
(2)根据题意,A(﹣1,3)在圆C上,求出AC的斜率,由垂直可得切线的斜率,由直线的点斜式方程即可得切线的方程.
解:(1)根据题意,设圆心的坐标为(a,b),
圆心C在直线x﹣y+1=0上,则有a﹣b+1=0,
圆C经过点A(﹣1,3),B(3,3)两点,则AB的垂直平分线的方程为x=1,则有a=1,
则有,解可得b=2;
则圆心的坐标为(1,2),半径r2=|AC|2=4+1=5,
则圆C的方程为(x﹣1)2+(y﹣2)2=5;
(2)根据题意,圆C的方程为(x﹣1)2+(y﹣2)2=5,有A(﹣1,3)在圆C上,有KAC,
则切线的斜率k=2,
则切线的方程为y﹣3=2(x+1),变形可得2x﹣y+5=0.
科目:高中数学 来源: 题型:
【题目】Fibonacci数列又称黄金分割数列,因为当n趋向于无穷大时,其相邻两项中的前项与后项的比值越来越接近黄金分割数.已知Fibonacci数列的递推关系式为.
(1)证明:Fibonacci数列中任意相邻三项不可能成等比数列;
(2)Fibonacci数列{an}的偶数项依次构成一个新数列,记为{bn},证明:{bn+1-H2·bn}为等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆 的左、右焦点分别为,,短轴的两端点分别为,,线段,的中点分别为,,且四边形是面积为8的矩形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过作直线交椭圆于,两点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为,,,,,
(Ⅰ)求直方图中的值;
(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于40分钟的人数记为,求的分布列和数学期望.(以直方图中频率作为概率)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com