精英家教网 > 高中数学 > 题目详情
P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,F1,F2分别为双曲线的左、右焦点,焦距为2c,则△PF1F2的内切圆的圆心横坐标为(  )
A、-aB、aC、-cD、c
分析:点P是双曲线右支上一点,按双曲线的定义,|PF1|-|PF2|=2a,设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),B、C分别为内切圆与PF1、PF2的切点.由同一点向圆引得两条切线相等知|PF1|-|PF2|=(PB+BF1)-(PC+CF2),由此得到△PF1F2的内切圆的圆心横坐标.
解答:解:∵点P是双曲线右支上一点,
∴按双曲线的定义,|PF1|-|PF2|=2a,
若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.
设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引得两条切线相等:
则有:PF1-PF2=(PB+BF1)-(PC+CF2
=BF1-CF2=AF1-F2A
=(c+x)-(c-x)
=2x=2a
x=a
所以内切圆的圆心横坐标为a.
故选B.
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为
2ab
a2+b2

②若|PF1|=e|PF2|,则e的最大值为
2

③△PF1F2的内切圆的圆心横坐标为a;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是双曲线
x2
a2
-
y2
b2
=1(a>,b>0)
与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,P是双曲线
x2
a2
-
y2
b2
=1
上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPAkPB=
2
3
,则该双曲线的离心率为
15
3
15
3

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆与双曲线之间有许多类似的性质:
P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上任一点,焦点F1、F2,∠F1PF2=α,三角形PF1F2面积为b2
sinα
1+cosα
,类比,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上任一点,焦点F1、F2,∠F1PF2=α,三角形PF1F2面积为
b2
sinα
1-cosα
b2
sinα
1-cosα

查看答案和解析>>

同步练习册答案