精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),直线C2的方程为y= ,以O为极点,以x轴正半轴为极轴建立极坐标系,
(1)求曲线C1和直线C2的极坐标方程;
(2)若直线C2与曲线C1交于A,B两点,求 +

【答案】
(1)解:曲线C1的参数方程为 (α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0

直线C2的方程为y= ,极坐标方程为tanθ=


(2)解:直线C2与曲线C1联立,可得ρ2﹣(2+2 )ρ+7=0,

设A,B两点对应的极径分别为ρ1,ρ2,则ρ12=2+2 ,ρ1ρ2=7,

+ = =


【解析】(1)利用三种方程的转化方法,即可得出结论;(2)利用极坐标方程,结合韦达定理,即可求 +

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面为直角梯形, .点的中点.

)求证: 平面

)已知平面底面,且.在棱上是否存在点,使?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下关于命题的说法正确的有(填写所有正确命题的序号).
①“若 ,则函数 ,且 )在其定义域内是减函数”是真命题;
②命题“若 ,则 ”的否命题是“若 ,则 ”;
③命题“若 都是偶数,则 也是偶数”的逆命题为真命题;
④命题“若 ,则 ”与命题“若 ,则 ”等价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 ,直线 与抛物线相交于不同的 两点.
(1)求抛物线的标准方程;
(2)如果直线 过抛物线的焦点,求 的值;
(3)如果 ,直线 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中
(1)当 时,求函数 的单调递减区间;
(2)若对任意的 为自然对数的底数)都有 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边上),现从仓库和中转站分别修两条道路,已知,且,设

(1)求关于的函数解析式

(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形 的三个顶点坐标为 .
(Ⅰ)求顶点 的坐标;
(Ⅱ)求四边形 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,它的前项和为,且

(Ⅰ)求

(Ⅱ)已知等比数列满足 ,设数列的前项和为,求

查看答案和解析>>

同步练习册答案