精英家教网 > 高中数学 > 题目详情

【题目】图,在三棱柱中,底面是边长为2的等边三角形,的中点.

)求证:

)若四边形是正方形,且,求直线与平面所成角的正弦值.

【答案】(I证明见解析;(II.

【解析】

试题分析:(I连结,设相交于点,连接,则中点,根据中位线有,所以II的中点为的中点为,以为原点,所在的直线为轴,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.利用直线的方向向量和平面的法向量,计算线面角的正弦值.

试题解析:

证法1:连结,设相交于点,连接,则中点,

的中点,

.

【证法2:取中点,连接

平行且等于四边形为平行四边行

同理可得

.

法一:设的中点为的中点为,以为原点,所在的直线为轴,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.

.

平面的一个法向量

.

所以直线与平面所成角的正弦值为.

【法二:取的中点,连结,则

,故

延长相交于点,连结

为直线与平面所成的角.

因为的中点,故,又

即直线与平面所成的角的正弦值为.

【法三:取的中点,连结,则

,故

中点,连结,过点作,则

连结

为直线与平面所成的角,

即直线与平面所成的角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,为棱上一点,为线段上一点,.

)证明:平面

)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两定点,⊙C的方程为.当⊙C的半径取最小值时:

(1)求出此时m的值,并写出⊙C的标准方程;

(2)在x轴上是否存在异于点E的另外一个点F,使得对于⊙C上任意一点P,总有为定值?若存在,求出点F的坐标,若不存在,请说明你的理由;

(3)在第(2)问的条件下,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,则下列说法不正确的是(

A.若点在直线上运动时,三棱锥的体积不变

B.若点是平面上到点距离相等的点,则点的轨迹是过点的直线

C.若点在直线上运动时,直线与平面所成角的大小不变

D.若点在直线上运动时,二面角的大小不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论函数的单调性;

)若对于任意的,若函数在区间上有最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.

)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量(单位:台,)的函数解析式

)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:

10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,表示当周的利润(单位:元),求的分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足:对任意都有成立时,

(1)求的值并证明

(2)判断的单调性并加以证明

(3)若函数上递减求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),

1)求曲线处的切线方程;

2)讨论函数的极小值;

3)若对任意的,总存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案