精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=eax+2x(x∈R)有大于零的极值点,则实数a的取值范围是(  )
A.a>-2B.a<-2C.a$>-\frac{1}{2}$D.a$<-\frac{1}{2}$

分析 求出函数的导数,求出极值点,利用极值点大于0,求出a的范围.

解答 解:函数f(x)=eax+2x(x∈R),
可得f′(x)=aeax+2,令f′(x)=aeax+2=0,解得x=$\frac{1}{a}ln(-\frac{2}{a})$
函数f(x)=eax+2x(x∈R)有大于零的极值点,
∴$\frac{1}{a}ln(-\frac{2}{a})>0$,解得a<-2.
故选:B.

点评 本题考查函数的导数的应用,函数的极值点的求法,考查不等式的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知在等差数列{an}中,a1=-1,公差d=2,an=15,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C1:y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于C,D两点,若线段CD的中点的纵坐标为-2
(1)求抛物线C1的方程;
(2)过点F的直线交抛物线C1于A,B两不同点,交y轴于点N,已知$\overrightarrow{NA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{NB}$=λ2$\overrightarrow{BF}$,则λ12是否为定值?若是,求出其值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:实数x满足(x-a)(x-3a)<0,其中a>0;命题q:实数x满足x2-5x+6≤0,若¬p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若双曲线右支上存在一点($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)与点F1关于直线y=-$\frac{bx}{a}$对称,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式$\frac{x+1}{2-x}$≤0的解集为(  )
A.[-2,1]B.[-1,2]C.[-1,2)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(2a-1)x在R上是减函数,则a的取值范围是(  )
A.0<a<$\frac{1}{2}$B.0<a<1C.$\frac{1}{2}$<a<1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,抛物线y=-x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x交抛物线y=-x2+bx+c对称轴右侧的抛物线于点P,连接PA、PC,设△AOP的面积为S1,△COP的面积为S2
(1)①若A、C两点坐标分别为(3,0),(0,3),求抛物线y=-x2+bx+c的解析式;
②试判断S1与S2之间的关系,并说明理由;
(2)将(1)中的抛物线沿x轴正方向平移,在平移过程中,是否存在点P,使S1=2S2,若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案