精英家教网 > 高中数学 > 题目详情
19.若关于x的方程3-x=a2有负实数根,则实数a的取值范围是(-∞,-1)∪(1,+∞).

分析 若关于x的方程3-x=a2有负实数根,则a2>30=1,解得实数a的取值范围.

解答 解:若关于x的方程3-x=a2有负实数根,
则a2>30=1,
解得:a∈(-∞,-1)∪(1,+∞),
故答案为:(-∞,-1)∪(1,+∞)

点评 本题考查的知识点是根的存在性及根的个数判断,指数的运算性质,二次不等式的解法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{1}{2}$,则下列结论中正确的序号是①②③.
①AC⊥BE  ②EF∥平面ABCD ③三棱锥A-BEF的体积为定值
④△AEF的面积与△BEF的面积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,经过圆上的点T的切线和弦AB的延长线相交于点C,求证:∠ATC=∠TBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆的焦点为F1(0,-1),F2(0,1),且经过点M($\frac{7}{4}$,$\frac{3\sqrt{2}}{2}$),则椭圆的方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1C.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1D.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若等轴双曲线的顶点到渐近线的距离为$\sqrt{2}$,则该双曲线的焦点到渐近线的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在某年级的联欢会上设计了一个摸奖的游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少3个红球就中奖,则中奖概率为0.19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin2x+2acosx-2a-1的最大值为$\frac{7}{2}$
(1)求a的值;
(2)设g(x)=$\frac{f(x)}{cosx}$-kcosx≥0在x∈[0,$\frac{π}{3}$]有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)有相同的焦点F1,F2,设椭圆的离心率为e1,双曲线的离心率为e2,O为坐标原点,P是两曲线的公共点,且∠F1PF2=60°,则$\frac{{e}_{1}{e}_{2}}{\sqrt{3{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga$\frac{1-mx}{x-1}$,(a>0且a≠1)是奇函数
(1)求m的值;
(2)讨论f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.

查看答案和解析>>

同步练习册答案