精英家教网 > 高中数学 > 题目详情

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20171月至201912月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位数为30万人

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

【答案】C

【解析】

利用折线图的性质直接求解.

解:由20171月至201912月期间月接待游客量的折线图得:

中,年接待游客量虽然逐月波动,但总体上逐年增加,故正确;

中,各年的月接待游客量高峰期都在8月,故正确;

中,20171月至12月月接待游客量的中位数小于30万人,故错误;

中,各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进入高中数学竞赛复赛的学生中,高一年级有8人,高二年级有16人,高三年级有32人,现釆用分层抽样的方法从这些学生中抽取7人进行釆访.

1)求应从各年级分别抽取的人数;

2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为,高二学生记为,高三学生记为

①列出所有可能的抽取结果;

②求抽取的2人均为高三年级学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数()的导函数为.

(Ⅰ)当时,求的最小值;

(Ⅱ)若函数存在极值,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续投骰子两次得到的点数分别为mn,作向量mn),则(1,﹣1)的夹角成为直角三角形内角的概率是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥PABC中,PC⊥平面ABCPCAC=2,ABBCDPB上一点,且CD⊥平面PAB

(1)求证:AB⊥平面PCB

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知双曲线的中心在原点,焦点在x轴上,实轴长为4,渐近线方程为.求双曲线的标准方程;

2)过(1)中双曲线上一点P的直线分别交两条渐近于两点,且P是线段AB的中点,求证:为常数;

3)我们知道函数的图象是由双曲线的图象逆时针旋转45°得到的,函数的图象也是双曲线,请尝试写出曲线的性质(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在股票市场上,投资者常根据股价每股的价格走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价与时间的关系在ABC段可近似地用函数的图象从最高点A到最低点C的一段来描述如图,并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC段关于直线l对称,点BD的坐标分别是

请你帮老张确定a的值,并写出ABC段的函数解析式;

如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.

(1)求甲恰好闯关3次才闯关成功的概率;

(2)记甲闯关的次数为,求随机变量的分布列和期望.。

查看答案和解析>>

同步练习册答案